scholarly journals Mimicking the Bone Marrow Niche in Vitro: Establishment of a 3D Perfusion Culture System for Mesenchymal Stromal Cells

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5136-5136
Author(s):  
Lika Drakhlis ◽  
Christiane Walter ◽  
Maike Hinrichs ◽  
Katarina Reinhardt ◽  
Dirk Reinhardt ◽  
...  

Abstract Introduction Hematopoiesis takes place in the bone marrow niche. The niche is created by a specific interplay of different cell types and signalling molecules such as growth factors and cytokines. The self-renewal and survival of hematopoietic stem cells (HSCs) as well as their proliferation and differentiation are stimulated by these microenvironmental factors. Hematological disorders such as leukemia are associated with disruptions of the microenvironment within the bone marrow niche. To get further insights into the interplay of cells and molecules creating the niche and potential alterations due to hematological disorders, it is of importance to develop a model which mimics the niche in vitro. Thus, the aim of this study was to establish a 3D perfusion culture system for human mesenchymal stromal cells (MSCs), which constitute an important supportive cellular component of the bone marrow niche. Methods We used a modular perfusion culture system (Will W. Minuth, Regensburg, Germany). The system was already applied for culturing of a variety of different tissues, but not yet for culturing human MSCs. MSCs were cultured on porous membrane filters consisting of mixed cellulose esters (pore size: 0.45 µm). Membranes were placed into a container, which was permanently perfused with fresh culture medium. Thus, the cells were constantly provided with nutrition while the accumulation of toxic metabolic products was prevented. To establish the system, several parameters were varied in order to find out optimal conditions for the MSCs in perfusion culture. The influence of the following parameters was analyzed: the material of the membranes, the cell seeding volume, the position of the membranes in the perfusion culture container, the concentration of HEPES buffer in the medium and its flow rate. The viability of the MSCs in different culture conditions was tested by applying an MTS assay. Additionally, morphology of MSCs and the expression of exemplary selected genes important for the bone marrow niche (CXCL12 and JAG1) were analyzed. MSCs cultured under conventional cell culture conditions served as controls. Statistical analysis was performed by using the Student’s t-test (GraphPad Prism 6). Results We could show that the amount of viable MSCs cultured under ideal conditions in perfusion culture was considerably higher than in conventional cell cuture (OD450: 0.37 ± 0.03 vs. 0.2 ± 0.01, P-value < 0.01 %). A perfusion rate of 20.8 µL per minute and a HEPES concentration of 50 mM were observed to be optimal for the viability and growth of the MSCs. The cells showed no differences in gene expression levels due to the different culture conditions. Table 1: Relative quantification of CXCL12 and JAG1 mRNA levels in MSCs DeltaCTCXCL12 DeltaCTJAG1 Perfusion culture 8.402 5.967 Conventional cell culture 8.008 6.750 Additionally, the MSCs cultured on membranes formed 3D-like networks. In perfusion culture, the MSCs seemed to grow in a more orderly manner compared to conventional cell culture conditions. No differences in morphology were observed due to the different culture conditions. Discussion The 3D perfusion culture system is sufficient to increase the viability and the growth of the MSCs without changing the gene expression profile of exemplary chosen genes relevant for homing and adhesion of HSCs in the bone marrow niche. The morphology of MSCs also did not change due to the different culture conditions. Conclusion This system can be used for further experiments including co-culturing experiments with MSCs and HSCs and/ or leukemic blasts and might be an important option to mimic the hematopoietic stem cell niche in vitro. Disclosures No relevant conflicts of interest to declare.

2018 ◽  
Author(s):  
Stefan Sieber ◽  
Annika Winter ◽  
Johanna Wachsmuth ◽  
Rhiannon David ◽  
Maria Stecklum ◽  
...  

AbstractMultipotent hematopoietic stem and progenitor cells HSPC reside in specialized stem cell niches within the bone marrow, that provide a suitable microenvironment for lifelong maintenance of the stem cells. Meaningful in vitro models recapitulating the in vivo stem cell niche biology can be employed for both basic research as well as for applied sciences and represent a powerful tool to reduce animal tests in preclinical studies. Recently we published the generation of an in vitro bone marrow niche model, capable of long-term cultivation of HSC based on an organ-on-a-chip platform. This study provides a detailed analysis of the 3D culture system including matrix environment analysis by SEM, transcriptome analysis and system intrinsic differentiation induction. Furthermore, the bone marrow on a chip model can serve to multiply and harvest HSPC, since repeated cell removal not compromised the functionality of the culture system. The prolongation of the culture time to 8 weeks demonstrate the capacity to apply the model in repeated drug testing experiments. The quality of the presented system is emphasized by the differentiation capacity of long-term cultivated HSPC in vitro and in vivo. Transplanted human HSPC migrated actively into the bone marrow of irradiated mice and contributed to the long-term reconstitution of the hematopoietic system after four and eight weeks of in vitro cultivation.The introduced system offers a multitude of possible applications to address a broad spectrum of questions regarding HSPC, the corresponding bone marrow niche biology, and pathological aberrations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie-Theresa Weickert ◽  
Judith S. Hecker ◽  
Michèle C. Buck ◽  
Christina Schreck ◽  
Jennifer Rivière ◽  
...  

AbstractMyelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell disorders with a poor prognosis, especially for elderly patients. Increasing evidence suggests that alterations in the non-hematopoietic microenvironment (bone marrow niche) can contribute to or initiate malignant transformation and promote disease progression. One of the key components of the bone marrow (BM) niche are BM stromal cells (BMSC) that give rise to osteoblasts and adipocytes. It has been shown that the balance between these two cell types plays an important role in the regulation of hematopoiesis. However, data on the number of BMSC and the regulation of their differentiation balance in the context of hematopoietic malignancies is scarce. We established a stringent flow cytometric protocol for the prospective isolation of a CD73+ CD105+ CD271+ BMSC subpopulation from uncultivated cryopreserved BM of MDS and AML patients as well as age-matched healthy donors. BMSC from MDS and AML patients showed a strongly reduced frequency of CFU-F (colony forming unit-fibroblast). Moreover, we found an altered phenotype and reduced replating efficiency upon passaging of BMSC from MDS and AML samples. Expression analysis of genes involved in adipo- and osteogenic differentiation as well as Wnt- and Notch-signalling pathways showed significantly reduced levels of DLK1, an early adipogenic cell fate inhibitor in MDS and AML BMSC. Matching this observation, functional analysis showed significantly increased in vitro adipogenic differentiation potential in BMSC from MDS and AML patients. Overall, our data show BMSC with a reduced CFU-F capacity, and an altered molecular and functional profile from MDS and AML patients in culture, indicating an increased adipogenic lineage potential that is likely to provide a disease-promoting microenvironment.


Blood ◽  
2020 ◽  
Vol 136 (22) ◽  
pp. 2535-2547 ◽  
Author(s):  
W. Grey ◽  
R. Chauhan ◽  
M. Piganeau ◽  
H. Huerga Encabo ◽  
M. Garcia-Albornoz ◽  
...  

Abstract Expansion of human hematopoietic stem cells (HSCs) is a rapidly advancing field showing great promise for clinical applications. Recent evidence has implicated the nervous system and glial family ligands (GFLs) as potential drivers of hematopoietic survival and self-renewal in the bone marrow niche; how to apply this process to HSC maintenance and expansion has yet to be explored. We show a role for the GFL receptor, RET, at the cell surface of HSCs in mediating sustained cellular growth, resistance to stress, and improved cell survival throughout in vitro expansion. HSCs treated with the key RET ligand/coreceptor complex, glial-derived neurotrophic factor and its coreceptor, exhibit improved progenitor function at primary transplantation and improved long-term HSC function at secondary transplantation. Finally, we show that RET drives a multifaceted intracellular signaling pathway, including key signaling intermediates protein kinase B, extracellular signal-regulated kinase 1/2, NF-κB, and p53, responsible for a wide range of cellular and genetic responses that improve cell growth and survival under culture conditions.


2022 ◽  
pp. 1-10
Author(s):  
Patrick Wuchter ◽  
Anke Diehlmann ◽  
Harald Klüter

<b><i>Background:</i></b> The stem cell niche in human bone marrow provides scaffolds, cellular frameworks and essential soluble cues to support the stemness of hematopoietic stem and progenitor cells (HSPCs). To decipher this complex structure and the corresponding cellular interactions, a number of in vitro model systems have been developed. The cellular microenvironment is of key importance, and mesenchymal stromal cells (MSCs) represent one of the major cellular determinants of the niche. Regulation of the self-renewal and differentiation of HSPCs requires not only direct cellular contact and adhesion molecules, but also various cytokines and chemokines. The C-X-C chemokine receptor type 4/stromal cell-derived factor 1 axis plays a pivotal role in stem cell mobilization and homing. As we have learned in recent years, to realistically simulate the physiological in vivo situation, advanced model systems should be based on niche cells arranged in a three-dimensional (3D) structure. By providing a dynamic rather than static setup, microbioreactor systems offer a number of advantages. In addition, the role of low oxygen tension in the niche microenvironment and its impact on hematopoietic stem cells need to be taken into account and are discussed in this review. <b><i>Summary:</i></b> This review focuses on the role of MSCs as a part of the bone marrow niche, the interplay between MSCs and HSPCs and the most important regulatory factors that need to be considered when engineering artificial hematopoietic stem cell niche systems. <b><i>Conclusion:</i></b> Advanced 3D model systems using MSCs as niche cells and applying microbioreactor-based technology are capable of simulating the natural properties of the bone marrow niche more closely than ever before.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1369
Author(s):  
Young-Su Kim ◽  
Arun Asif ◽  
Abdul Rahim Chethikkattuveli Salih ◽  
Jae-Wook Lee ◽  
Ki-Nam Hyun ◽  
...  

The spheroid culture system provides an efficient method to emulate organ-specific pathophysiology, overcoming the traditional two-dimensional (2D) cell culture limitations. The intervention of microfluidics in the spheroid culture platform has the potential to enhance the capacity of in vitro microphysiological tissues for disease modeling. Conventionally, spheroid culture is carried out in static conditions, making the media nutrient-deficient around the spheroid periphery. The current approach tries to enhance the capacity of the spheroid culture platform by integrating the perfusion channel for dynamic culture conditions. A pro-inflammatory hepatic model was emulated using a coculture of HepG2 cell line, fibroblasts, and endothelial cells for validating the spheroid culture plate with a perfusable channel across the spheroid well. Enhanced proliferation and metabolic capacity of the microphysiological model were observed and further validated by metabolic assays. A comparative analysis of static and dynamic conditions validated the advantage of spheroid culture with dynamic media flow. Hepatic spheroids were found to have improved proliferation in dynamic flow conditions as compared to the static culture platform. The perfusable culture system for spheroids is more physiologically relevant as compared to the static spheroid culture system for disease and drug analysis.


2016 ◽  
Vol 364 (3) ◽  
pp. 573-584 ◽  
Author(s):  
Patrick Wuchter ◽  
Rainer Saffrich ◽  
Stefan Giselbrecht ◽  
Cordula Nies ◽  
Hanna Lorig ◽  
...  

Blood ◽  
1991 ◽  
Vol 78 (12) ◽  
pp. 3155-3161 ◽  
Author(s):  
RM Schwartz ◽  
SG Emerson ◽  
MF Clarke ◽  
BO Palsson

Abstract We studied the effect of the combination of rapid culture medium exchange with the addition of the human hematopoietic growth factors interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), and erythropoietin (Epo) on the proliferation and differentiation of human long-term bone marrow cultures (LTBMCs). Individually and in combinations, IL-3, GM-CSF, and Epo were added to the culture medium of LTBMCs that were maintained with 50% medium volume exchange per day. The combination of IL-3 + GM-CSF + Epo generated the most prolific cultures with an order of magnitude increase in nonadherent cell production from weeks 2 through 8 in culture as compared with unsupplemented controls. Under these conditions, the cultures produced as many cells as were inoculated every 2 weeks and led to a greater than 2.5-fold expansion in terms of the number of nonadherent cells produced over a 6- to 8-week period. Furthermore, the LTBMCs produced nonadherent colony-forming unit-GM (CFU-GM) for more than 20 weeks. The rapid medium exchange combined with the addition of human hematopoietic CSFs significantly enhances the proliferation and differentiation of LTBMCs. These results indicate that addition of combinations of hematopoietic CSFs, together with a rapid medium exchange rate, can provide culture conditions that are suitable for the expansion of the progenitor cell pool and perhaps for the increased survival of hematopoietic stem cells in culture. Although these culture conditions still fall short of full reconstitution of functional human bone marrow, they provide an improved approach to hematopoietic cell culture that may permit the expansion and manipulation of progenitor cells in vitro.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Huihong Zeng ◽  
Jiaoqi Cheng ◽  
Ying Fan ◽  
Yingying Luan ◽  
Juan Yang ◽  
...  

Development of hematopoietic stem cells is a complex process, which has been extensively investigated. Hematopoietic stem cells (HSCs) in mouse fetal liver are highly expanded to prepare for mobilization of HSCs into the fetal bone marrow. It is not completely known how the fetal liver niche regulates HSC expansion without loss of self-renewal ability. We reviewed current progress about the effects of fetal liver niche, chemokine, cytokine, and signaling pathways on HSC self-renewal, proliferation, and expansion. We discussed the molecular regulations of fetal HSC expansion in mouse and zebrafish. It is also unknown how HSCs from the fetal liver mobilize, circulate, and reside into the fetal bone marrow niche. We reviewed how extrinsic and intrinsic factors regulate mobilization of fetal liver HSCs into the fetal bone marrow, which provides tools to improve HSC engraftment efficiency during HSC transplantation. Understanding the regulation of fetal liver HSC mobilization into the fetal bone marrow will help us to design proper clinical therapeutic protocol for disease treatment like leukemia during pregnancy. We prospect that fetal cells, including hepatocytes and endothelial and hematopoietic cells, might regulate fetal liver HSC expansion. Components from vascular endothelial cells and bones might also modulate the lodging of fetal liver HSCs into the bone marrow. The current review holds great potential to deeply understand the molecular regulations of HSCs in the fetal liver and bone marrow in mammals, which will be helpful to efficiently expand HSCs in vitro.


Blood ◽  
2006 ◽  
Vol 109 (5) ◽  
pp. 1825-1833 ◽  
Author(s):  
Sinead Forde ◽  
Britt Jorgensen Tye ◽  
Sarah E. Newey ◽  
Maria Roubelakis ◽  
Jon Smythe ◽  
...  

Abstract Hematopoietic stem cell/hematopoietic progenitor cell (HSC/HPC) homing to specific microenvironmental niches involves interactions between multiple receptor ligand pairs. Although CXCL12/CXCR4 plays a central role in these events, CXCR4 regulators that provide the specificity for such cells to lodge and be retained in particular niches are poorly defined. Here, we provide evidence that the sialomucin endolyn (CD164), an adhesion receptor that regulates the adhesion of CD34+ cells to bone marrow stroma and the recruitment of CD34+CD38lo/− cells into cycle, associates with CXCR4. The class II 103B2 monoclonal antibody, which binds the CD164 N-linked glycan-dependent epitope or CD164 knockdown by RNA interference, significantly inhibits the migration of CD133+ HPCs toward CXCL12 in vitro. On presentation of CXCL12 on fibronectin, CD164 associates with CXCR4, an interaction that temporally follows the association of CXCR4 with the integrins VLA-4 and VLA-5. This coincides with PKC-ζ and Akt signaling through the CXCR4 receptor, which was disrupted on the loss of CD164 though MAPK signaling was unaffected. We therefore demonstrate a novel association among 3 distinct families of cell-surface receptors that regulate cell migratory responses and identify a new role for CD164. We propose that this lends specificity to the homing and lodgment of these cells within the bone marrow niche.


Sign in / Sign up

Export Citation Format

Share Document