EPR Studies of Nitric Oxide Interactions of Alkoxyl and Peroxyl Radicals in In Vitro and Ex Vivo Model Systems

2001 ◽  
Vol 3 (2) ◽  
pp. 177-187 ◽  
Author(s):  
Walee Chamulitrat
Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 899
Author(s):  
Clara Liu Chung Ming ◽  
Kimberly Sesperez ◽  
Eitan Ben-Sefer ◽  
David Arpon ◽  
Kristine McGrath ◽  
...  

Preeclampsia is a multifactorial cardiovascular disorder diagnosed after 20 weeks of gestation, and is the leading cause of death for both mothers and babies in pregnancy. The pathophysiology remains poorly understood due to the variability and unpredictability of disease manifestation when studied in animal models. After preeclampsia, both mothers and offspring have a higher risk of cardiovascular disease (CVD), including myocardial infarction or heart attack and heart failure (HF). Myocardial infarction is an acute myocardial damage that can be treated through reperfusion; however, this therapeutic approach leads to ischemic/reperfusion injury (IRI), often leading to HF. In this review, we compared the current in vivo, in vitro and ex vivo model systems used to study preeclampsia, IRI and HF. Future studies aiming at evaluating CVD in preeclampsia patients could benefit from novel models that better mimic the complex scenario described in this article.


Author(s):  
Clara Liu Chung Ming ◽  
Kimberly Sesperez ◽  
Eitan Ben-Sefer ◽  
David Arpon ◽  
Kristine McGrath ◽  
...  

Preeclampsia is a multifactorial cardiovascular disorder diagnosed after 20 weeks of gestation that is the leading cause of death for both mothers and babies in pregnancy. The pathophysiology remains poorly understood due to variability and unpredictability of disease manifestation when studied in animal models. After preeclampsia, both mothers and offspring have a higher risk of cardiovascular disease (CVD) including myocardial infarction or heart attack and heart failure (HF). Myocardial infarction is an acute myocardial damage that can be treated through reperfusion, however, that therapeutic approach leads to ischemic/reperfusion injury (IRI) often leading to HF. In this review, we compared the current in vivo, in vitro and ex vivo model systems used to study preeclampsia, IRI and HF. Future studies aiming at evaluating CVD in preeclampsia patients could benefit from novel models that better mimic the complex scenario described in this article.


2014 ◽  
Vol 180 ◽  
pp. 60-70 ◽  
Author(s):  
Sandy Naumann ◽  
Jean-Philippe Meyer ◽  
Andreas Kiesow ◽  
Yahya Mrestani ◽  
Johannes Wohlrab ◽  
...  

2015 ◽  
Vol 7 (3) ◽  
Author(s):  
Peter Wick ◽  
Savvina Chortarea ◽  
Olivier T. Guenat ◽  
Matthias Roesslein ◽  
Janick D. Stucki ◽  
...  

AbstractEngineered nanomaterials have unique and novel properties enabling wide-ranging new applications in nearly all fields of research. As these new properties have raised concerns about potential adverse effects for the environment and human health, extensive efforts are underway to define reliable, cost- and time-effective, as well as mechanistic-based testing strategies to replace the current method of animal testing, which is still the most prevalent model used for the risk assessment of chemicals. Current approaches for nanomaterials follow this line. The aim of this review is to explore and qualify the relevance of new in vitro and ex vivo models in (nano)material safety assessment, a crucial prerequisite for translation into applications.


1995 ◽  
Vol 73 (02) ◽  
pp. 219-222 ◽  
Author(s):  
Manuel Monreal ◽  
Luis Monreal ◽  
Rafael Ruiz de Gopegui ◽  
Yvonne Espada ◽  
Ana Maria Angles ◽  
...  

SummaryThe APTT has been considered the most suitable candidate to monitor the anticoagulant activity of hirudin. However, its use is hampered by problems of standardization, which make the results heavily dependent on the responsiveness of the reagent used. Our aim was to investigate if this different responsiveness of different reagents when added in vitro is to be confirmed in an ex vivo study.Two different doses of r-hirudin (CGP 39393), 0.3 mg/kg and 1 mg/kg, were administered subcutaneously to 20 New Zealand male rabbits, and the differences in prolongation of APTT 2 and 12 h later were compared, using 8 widely used commercial reagents. All groups exhibited a significant prolongation of APTT 2 h after sc administration of hirudin, both at low and high doses. But this prolongation persisted 12 h later only when the PTTa reagent (Boehringer Mannheim) was used. In general, hirudin prolonged the APTT most with the silica- based reagents.In a further study, we compared the same APTT reagents in an in vitro study in which normal pooled plasma was mixed with increasing amount of hirudin. We failed to confirm a higher sensitivity for silica- containing reagents. Thus, we conclude that subcutaneous administration of hirudin prolongs the APTT most with the silica-based reagents, but this effect is exclusive for the ex vivo model.


2019 ◽  
Vol 20 (11) ◽  
pp. 920-933 ◽  
Author(s):  
Lucía Gato-Calvo ◽  
Tamara Hermida-Gómez ◽  
Cristina R. Romero ◽  
Elena F. Burguera ◽  
Francisco J. Blanco

Background: Platelet Rich Plasma (PRP) has recently emerged as a potential treatment for osteoarthritis (OA), but composition heterogeneity hampers comparison among studies, with the result that definite conclusions on its efficacy have not been reached. Objective: 1) To develop a novel methodology to prepare a series of standardized PRP releasates (PRP-Rs) with known absolute platelet concentrations, and 2) To evaluate the influence of this standardization parameter on the anti-inflammatory properties of these PRP-Rs in an in vitro and an ex vivo model of OA. Methods: A series of PRPs was prepared using the absolute platelet concentration as the standardization parameter. Doses of platelets ranged from 0% (platelet poor plasma, PPP) to 1.5·105 platelets/µl. PRPs were then activated with CaCl2 to obtain releasates (PRP-R). Chondrocytes were stimulated with 10% of each PRP-R in serum-free culture medium for 72 h to assess proliferation and viability. Cells were co-stimulated with interleukin (IL)-1β (5 ng/ml) and 10% of each PRP-R for 48 h to determine the effects on gene expression, secretion and intra-cellular content of common markers associated with inflammation, catabolism and oxidative stress in OA. OA cartilage explants were co-stimulated with IL-1β (5 ng/ml) and 10% of either PRP-R with 0.75·105 platelets/µl or PRP-R with 1.5·105 platelets/µl for 21 days to assess matrix inflammatory degradation. Results: Chondrocyte viability was not affected, and proliferation was dose-dependently increased. The gene expression of all pro-inflammatory mediators was significantly and dose-independently reduced, except for that of IL-1β and IL-8. Immunoblotting corroborated this effect for inducible NO synthase (NOS2). Secreted matrix metalloproteinase-13 (MMP-13) was reduced to almost basal levels by the PRP-R from PPP. Increasing platelet dosage led to progressive loss to this anti-catabolic ability. Safranin O and toluidine blue stains supported the beneficial effect of low platelet dosage on cartilage matrix preservation. Conclusion: We have developed a methodology to prepare PRP releasates using the absolute platelet concentration as the standardization parameter. Using this approach, the composition of the resulting PRP derived product is independent of the donor initial basal platelet count, thereby allowing the evaluation of its effects objectively and reproducibly. In our OA models, PRP-Rs showed antiinflammatory, anti-oxidant and anti-catabolic properties. Platelet enrichment could favor chondrocyte proliferation but is not necessary for the above effects and could even be counter-productive.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 91
Author(s):  
Rishi Man Chugh ◽  
Payel Bhanja ◽  
Andrew Norris ◽  
Subhrajit Saha

The new strain of coronavirus (severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)) emerged in 2019 and hence is often referred to as coronavirus disease 2019 (COVID-19). This disease causes hypoxic respiratory failure and acute respiratory distress syndrome (ARDS), and is considered as the cause of a global pandemic. Very limited reports in addition to ex vivo model systems are available to understand the mechanism of action of this virus, which can be used for testing of any drug efficacy against virus infectivity. COVID-19 induces tissue stem cell loss, resulting inhibition of epithelial repair followed by inflammatory fibrotic consequences. Development of clinically relevant models is important to examine the impact of the COVID-19 virus in tissue stem cells among different organs. In this review, we discuss ex vivo experimental models available to study the effect of COVID-19 on tissue stem cells.


2020 ◽  
Author(s):  
Kévin Brunet ◽  
François Arrivé ◽  
Jean-Philippe Martellosio ◽  
Isabelle Lamarche ◽  
Sandrine Marchand ◽  
...  

Abstract Alveolar macrophages (AM) are the first-line lung defense against Mucorales in pulmonary mucormycosis. Since corticosteroid use is a known risk factor for mucormycosis, the aim of this study was to describe the role of corticosteroids on AM capacities to control Lichtheimia corymbifera spore growth using a new ex vivo model. An in vivo mouse model was developed to determine the acetate cortisone dose able to trigger pulmonary invasive infection. Then, in the ex vivo model, male BALB/c mice were pretreated with the corticosteroid regimen triggering invasive infection, before AM collection through bronchoalveolar lavage. AMs from corticosteroid-treated mice and untreated control AMs were then exposed to L. corymbifera spores in vitro (ratio 1:5). AM control of fungal growth, adherence/phagocytosis, and oxidative burst were assessed using optical densities by spectrophotometer, flow cytometry, and 2', 7'-dichlorofluoresceine diacetate fluorescence, respectively. Cortisone acetate at 500 mg/kg, at D-3 and at D0, led to pulmonary invasive infection at D3. Co-incubated spores and AMs from corticosteroid-treated mice had significantly higher absorbance (fungal growth) than co-incubated spores and control AMs, at 24 h (P = .025), 36 h (P = .004), and 48 h (P = .001). Colocalization of spores with AMs from corticosteroid-treated mice was significantly lower than for control AMs (7.6 ± 1.9% vs 22.3 ± 5.8%; P = .003), reflecting spore adherence and phagocytosis inhibition. Finally, oxidative burst was significantly increased when control AMs were incubated with spores (P = 0.029), while corticosteroids hampered oxidative burst from treated AMs (P = 0.321). Corticosteroids enhanced fungal growth of L. corymbifera through AM phagocytosis inhibition and burst oxidative decrease in our ex vivo model. Lay Summary The aim of this study was to describe the impact of corticosteroids on alveolar macrophage (AM) capacities to control Mucorales growth in a new murine ex vivo model. Corticosteroids enhanced fungal growth of L. corymbifera through AM phagocytosis inhibition and burst oxidative decrease.


2017 ◽  
Vol 22 (1) ◽  
pp. 31 ◽  
Author(s):  
Hugo Díez Ortega ◽  
Francisco Correa Toral ◽  
Leylin Delgado Hernández ◽  
Carolina Echavarría González ◽  
Fátima Serna Varona ◽  
...  

Endodontic disease has mainly a microbial origin. It is caused by biofilms capable of attaching and surviving in the root canal. Therefore, it is important to study the conditions in which those biofilms grow, develop and colonize the root canal system. However, few studies have used natural teeth as models, which would take into account the root canal anatomical complexity and simulate the clinical reality. In this study, we used human premolar root canals to standardize <em>in vitro</em> biofilm optimal formation conditions for microorganisms such as <em>Enterococcus faecalis</em>, <em>Staphylococcus aureus</em> and <em>Candida albicans</em>. 128 lower premolars underwent canal preparation using K-type files, and were treated with 5.25% sodium hypochlorite and EDTA. Samples were inoculated with microorganisms and incubated for 15, 30, 45, and 60 days under anaerobiosis (CO2 atmosphere) and aerobiosis. Microorganism presence was confirmed by Gram staining, cell culture, and electron microscopy. Exopolysaccharide matrix and microorganism aggregation were observed following 15 days of incubation. Bacterial growth towards the apical third of the root canal and biofilm maturation was detected after 30 days. CO2 atmosphere favored microbial growth the most. <em>In vitro</em> biofilm maturation was confirmed after 30 days of incubation under a CO2 atmosphere for both bacteria and yeast.


Sign in / Sign up

Export Citation Format

Share Document