Quantifying the Shape Memory Performance of a Three-Dimensional-Printed Biobased Polyester/Cellulose Composite Material

Author(s):  
Maxime Barbier ◽  
Marie Joo Le Guen ◽  
John McDonald-Wharry ◽  
James H. Bridson ◽  
Kim L. Pickering
Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1234 ◽  
Author(s):  
Hongjie Bi ◽  
Min Xu ◽  
Gaoyuan Ye ◽  
Rui Guo ◽  
Liping Cai ◽  
...  

In this study, a series of heat-induced shape memory composites was prepared by the hot-melt extrusion and three-dimensional (3D) printing of thermoplastic polyurethane (TPU) using wood flour (WF) with different contents of EPDM-g-MAH. The mechanical properties, microtopography, thermal property analysis, and heat-induced shape memory properties of the composites were examined. The results showed that, when the EPDM-g-MAH content was 4%, the tensile elongation and tensile strength of the composites reached the maximum value. The scanning electron microscopy and dynamic mechanical analysis results revealed a good interface bonding between TPU and WF when the EPDM-g-MAH content was 4%. The thermogravimetric analysis indicated that the thermal stability of TPU/WF composites was enhanced by the addition of 4% EPDM-g-MAH. Heat-induced shape memory test results showed that the shape memory performance of composites with 4% EPDM-g-MAH was better than that of unmodified-composites. The composites’ shape recovery performance at a temperature of 60 °C was higher than that of the composites at ambient temperature. It was also found that, when the filling angle of the specimen was 45°, the recovery angle of the composites was larger.


Author(s):  
Yongsan An ◽  
Joon Hyeok Jang ◽  
Ji Ho Youk ◽  
Woong-Ryeol Yu

Abstract Four-dimensional (4D) printing is used to describe three-dimensional (3D)-printed objects with properties that change over time. Shape memory polymers (SMPs) are representative materials for 4D printing technologies. The ability to print geometrically complex, free-standing forms with SMPs is crucial for successful 4D printing. In this study, an SMP capable of frontal polymerization featuring exothermic self-propagation was synthesized by adding cyclooctene to a poly(dicyclopentadiene) network, resulting in switching segments. The rheological properties of this SMP were controlled by adjusting incubation time. A nozzle system was designed such that the SMP could be printed with simultaneous polymerization to yield a free-standing structure. The printing speed was set to 3 cm/min according to the frontal polymerization speed. A free-standing, hexagonal spiral was successfully printed and printed spiral structure showed excellent shape memory performance with a fixity ratio of about 98% and a recovery ratio of 100%, thereby demonstrating the 3D printability and shape memory performance of frontally polymerizable SMPs.


2013 ◽  
Vol 30 (2) ◽  
pp. 134
Author(s):  
Hui FU ◽  
Jishan QIU ◽  
Ning CHONG ◽  
Yaqing WANG ◽  
Yuanyuan TIAN ◽  
...  

Author(s):  
Tianjiao Wang ◽  
Jun Zhao ◽  
Chuanxin Weng ◽  
Tong Wang ◽  
Yayun Liu ◽  
...  

Shape memory polymers (SMPs) that change shapes as designed by external stimuli have become one of the most promising materials as actuators, sensors, and deployable devices. However, their practical applications...


2020 ◽  
Vol 7 (4) ◽  
pp. 170-180
Author(s):  
Hongjie Bi ◽  
Xin Jia ◽  
Gaoyuan Ye ◽  
Zechun Ren ◽  
Haiying Yang ◽  
...  

2013 ◽  
Vol 135 (11) ◽  
Author(s):  
Edwin Peraza-Hernandez ◽  
Darren Hartl ◽  
Edgar Galvan ◽  
Richard Malak

Origami engineering—the practice of creating useful three-dimensional structures through folding and fold-like operations on two-dimensional building-blocks—has the potential to impact several areas of design and manufacturing. In this article, we study a new concept for a self-folding system. It consists of an active, self-morphing laminate that includes two meshes of thermally-actuated shape memory alloy (SMA) wire separated by a compliant passive layer. The goal of this article is to analyze the folding behavior and examine key engineering tradeoffs associated with the proposed system. We consider the impact of several design variables including mesh wire thickness, mesh wire spacing, thickness of the insulating elastomer layer, and heating power. Response parameters of interest include effective folding angle, maximum von Mises stress in the SMA, maximum temperature in the SMA, maximum temperature in the elastomer, and radius of curvature at the fold line. We identify an optimized physical realization for maximizing folding capability under mechanical and thermal failure constraints. Furthermore, we conclude that the proposed self-folding system is capable of achieving folds of significant magnitude (as measured by the effective folding angle) as required to create useful 3D structures.


Sign in / Sign up

Export Citation Format

Share Document