Cancer Vaccine Effectiveness May Lie in Reawakening Dormant T-Cells

2021 ◽  
Vol 8 (6) ◽  
pp. 4-4
2021 ◽  
Vol 96 ◽  
pp. 107761
Author(s):  
Alexander Batista-Duharte ◽  
Alejandra Pera ◽  
Salvador F. Aliño ◽  
Rafael Solana

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A479-A479
Author(s):  
Matteo Rossi ◽  
Elodie Belnoue ◽  
Susanna Carboni ◽  
Wilma Besson-Di Berardino ◽  
Erika Riva ◽  
...  

BackgroundKISIMATM platform allows the development of protein-based cancer vaccines able to induce a potent, tumor-specific CD8 and CD4 T cells response. While the cell penetrating peptide and the Anaxa portions confer, respectively, the cell delivery and self-adjuvanticity properties, the multiantigenic domain allows the targeting of different cancer antigens, resulting in anti-tumoral efficacy in different murine models.1 The first clinical candidate developed from KISIMATM is currently tested, together with anti-PD-1 blockade, in a phase I study in metastatic colorectal cancer patients. Stimulator of interferon genes agonists (STINGa) were shown to induce a potent type I interferon response in preclinical studies. The intratumoral administration of STINGa, to promote tumor inflammation, was shown to result in a protective spontaneous immune response in several murine tumor models. However, the encouraging preclinical results are not supported by recent clinical data, challenging the efficacy of unspecific monotherapy.As it is more and more clear that an effective cancer immunotherapy will require the combination of different treatment strategies, we investigate here the efficacy of combining KISIMATM cancer vaccine with STINGa treatment.MethodsMice were vaccinated with subcutaneous (s.c.) injection of KISIMATM vaccine combined with s.c. administration of STINGa. Safety and immunogenicity were assessed by measuring temperature, serum cytokines and the peripheral antigen-specific response. Anti-tumoral efficacy as well as in depth monitoring of TILs and tumor microenvironment modulation were assessed following therapeutic vaccination in a HPV16 E6 and E7 expressing TC-1 cold tumor model.ResultsCombination treatment was well tolerated and promoted the development of circulating antigen-specific CD8 T cells. In TC-1 tumor bearing mice, KISIMATM therapeutic vaccination resulted in the infiltration of both antigen-specific CD8 and CD4 T cells within the tumor, as well as a switch of tumor associated macrophages polarization toward the more inflammatory type 1. Combination therapy further increased the tumor microenvironment modulation induced by KISIMATM vaccine, promoting the polarization of inflammatory Thelper 1 CD4 T cells and increasing the effector function of antigen-specific CD8 T cells. The profound modulation of the tumor microenvironment induced by combination therapy enhanced the beneficial effect of KISIMATM vaccination, resulting in a prolonged tumor control.ConclusionsCombination of KISIMATM cancer vaccine with systemic STINGa treatment induces the development of a potent, tumor-specific immune response resulting in a profound modulation of the TME. As check-point inhibitor (CPI) therapy is ineffective on poorly infiltrated tumors, combination with therapies able to highly enhance tumor infiltration by T cells could expand CPI indications.Ethics ApprovalThe study was approved by the Canton of Geneva Ethic Board, under the license number GE165/19ReferenceBelnoue E, et al. Targeting self and neo-epitopes with a modular self-adjuvanting cancer vaccine. JCI Insight 2019. 4:11.


PLoS ONE ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. e0209153 ◽  
Author(s):  
Lauren Zebertavage ◽  
Shelly Bambina ◽  
Jessica Shugart ◽  
Alejandro Alice ◽  
Kyra D. Zens ◽  
...  

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Mevyn Nizard ◽  
Hélène Roussel ◽  
Mariana O. Diniz ◽  
Soumaya Karaki ◽  
Thi Tran ◽  
...  

2021 ◽  
Vol 17 (9) ◽  
pp. e1009318
Author(s):  
Marisabel Rodriguez Messan ◽  
Osman N. Yogurtcu ◽  
Joseph R. McGill ◽  
Ujwani Nukala ◽  
Zuben E. Sauna ◽  
...  

Cancer vaccines are an important component of the cancer immunotherapy toolkit enhancing immune response to malignant cells by activating CD4+ and CD8+ T cells. Multiple successful clinical applications of cancer vaccines have shown good safety and efficacy. Despite the notable progress, significant challenges remain in obtaining consistent immune responses across heterogeneous patient populations, as well as various cancers. We present a mechanistic mathematical model describing key interactions of a personalized neoantigen cancer vaccine with an individual patient’s immune system. Specifically, the model considers the vaccine concentration of tumor-specific antigen peptides and adjuvant, the patient’s major histocompatibility complexes I and II copy numbers, tumor size, T cells, and antigen presenting cells. We parametrized the model using patient-specific data from a clinical study in which individualized cancer vaccines were used to treat six melanoma patients. Model simulations predicted both immune responses, represented by T cell counts, to the vaccine as well as clinical outcome (determined as change of tumor size). This model, although complex, can be used to describe, simulate, and predict the behavior of the human immune system to a personalized cancer vaccine.


2021 ◽  
Vol 131 (16) ◽  
Author(s):  
Joshua R. Veatch ◽  
Naina Singhi ◽  
Shivani Srivastava ◽  
Julia L. Szeto ◽  
Brenda Jesernig ◽  
...  

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. TPS5104-TPS5104
Author(s):  
Nishith K. Singh ◽  
Joseph W. Kim ◽  
Christopher Ryan Heery ◽  
William L. Dahut ◽  
Anna Couvillon ◽  
...  

TPS5104 Background: There is a strong rationale to combine therapeutic cancer vaccines with hormonal abrogation in prostate cancer. Androgen abrogation augments T-cell trafficking to prostate, decreases immune tolerance, increases production of naïve thymic T-cells, enhances cytotoxic T-cell repertoire. PSA TRICOM (PROSTVAC) is a therapeutic, viral-vector based, off-the-shelf, cancer vaccine of PSA & 3 co-stimulatory molecules in phase III testing. This was developed at the NCI in collaboration with Bavarian Nordic Immunotherapeutics. It has demonstrated safety and survival benefit in a randomized phase 2 trial of metastatic castrate resistant prostate cancer (mCRPC). Enzalutamide is a modern androgen receptor inhibitor (ARI) approved for the treatment of mCRPC. Data from the clinical trials with these therapies suggest good individual tolerability without any overlapping toxicities. Analysis of previous trials suggests that vaccines may enhance clinical outcomes with ARI. These data form the scientific basis for a combination approach of a cancer vaccine with ARI to control tumor progression in mCRPC. Methods: A randomized, phase 2, open-label clinical trial at the NCI will enroll 72 chemo-naïve, minimally symptomatic patients with mCRPC. They will be randomized (1:1) to enzalutamide (160 mg daily) alone, or enzalutamide with PSA TRICOM for treatment until radiographic progression. PSA-TRICOM will be administered in a core phase (with day 1, 15 and 29 then 4 additional monthly boosts) followed by continued boosts every 3 months. The primary end point will evaluate time to progression in each arm with secondary endpoints including overall survival and systemic immune responses (lymphocyte subsets, regulatory T-cells, regulatory T-cell function, cytokines, naïve thymic emigrants). If a therapeutic cancer vaccine can enhance the clinical efficacy of a hormonal agent such as enzalutamide, it may help define a new role for vaccines as an adjuvant to standard therapies. We will also evaluate this combination in a second trial in non-metastatic, castration-sensitive patients where this combination may yield its greatest clinical impact.


ISRN Oncology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Mohan Karkada ◽  
Tara Quinton ◽  
Rachelle Blackman ◽  
Marc Mansour

A successful cancer vaccine needs to overcome the effects of immune-suppressor cells such as Treg lymphocytes, suppressive cytokine-secreting Tr1 cells, and myeloid-derived suppressor cells (MDSCs), while enhancing tumor-specific immune responses. Given the relative poor efficacy associated with current cancer vaccines, a novel vaccine platform called DepoVaxTM (DPX) was developed. C3 tumor-challenged mice were immunized with HPV-E7 peptide in DPX- or conventional-emulsion- (CE-) based vaccine. While control mice showed marked increase in Treg/MDSCs in spleen and blood, in mice treated with DPX-E7 the levels remained similar to tumor-free naive mice. Such differences were also seen within the tumor. Antigen-specific IL10-secreting CD4/CD8 T cells and TGF-β+CD8+ T cell frequencies were increased significantly in CE-treated and control mice in contrast to DPX-E7-immunized mice. Analysis of tumor-infiltrating cells revealed higher frequency of suppressor cells in untreated controls than in DPX-E7 group while the converse was true for tumor-infiltrating CD8 T cells. Immunization of tumor-bearing HLA-A2 transgenic mice with human vaccine DPX-0907, a peptide-based vaccine for breast/ovarian/prostate cancers, showed efficient induction of immune response to cancer peptides despite the presence of suppressor cells. Thus, this study provides the rationale for using DPX-based cancer vaccines in immune-suppressed cancer patients, to induce effective anticancer immunity.


Sign in / Sign up

Export Citation Format

Share Document