Nonidentical Induction of the Guanylate Binding Protein and the 56K Protein by Type I and Type II Interferons

1986 ◽  
Vol 6 (4) ◽  
pp. 417-427 ◽  
Author(s):  
YIH-SHYUN E. CHENG ◽  
MARY F. BECKER-MANLEY ◽  
THAI D. NGUYEN ◽  
WILLIAM F. DEGRADO ◽  
GERALD J. JONAK
mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Yong Fu ◽  
Xia Cui ◽  
Sai Fan ◽  
Jing Liu ◽  
Xiao Zhang ◽  
...  

ABSTRACT Acyl coenzyme A (CoA)-binding protein (ACBP) can bind acyl-CoAs with high specificity and affinity, thus playing multiple roles in cellular functions. Mitochondria of the apicomplexan parasite Toxoplasma gondii have emerged as key organelles for lipid metabolism and signaling transduction. However, the rationale for how this parasite utilizes acyl-CoA-binding protein to regulate mitochondrial lipid metabolism remains unclear. Here, we show that an ankyrin repeat-containing protein, TgACBP2, is localized to mitochondria and displays active acyl-CoA-binding activities. Dephosphorylation of TgACBP2 is associated with relocation from the plasma membrane to the mitochondria under conditions of regulation of environmental [K+]. Under high [K+] conditions, loss of ACBP2 induced mitochondrial dysfunction and apoptosis-like cell death. Disruption of ACBP2 caused growth and virulence defects in the type II strain but not in type I parasites. Interestingly, mitochondrial association factor-1 (MAF1)-mediated host mitochondrial association (HMA) restored the growth ability of ACBP2-deficient type II parasites. Lipidomics analysis indicated that ACBP2 plays key roles in the cardiolipin metabolism of type II parasites and that MAF1 expression complemented the lipid metabolism defects of ACBP2-deficient type II parasites. In addition, disruption of ACBP2 caused attenuated virulence of Prugniuad (Pru) parasites for mice. Taking the results collectively, these data indicate that ACBP2 is critical for the growth and virulence of type II parasites and for the growth of type I parasites under high [K+] conditions. IMPORTANCE Toxoplasma gondii is one of the most successful human parasites, infecting nearly one-third of the total world population. T. gondii tachyzoites residing within parasitophorous vacuoles (PVs) can acquire fatty acids both via salvage from host cells and via de novo synthesis pathways for membrane biogenesis. However, although fatty acid fluxes are known to exist in this parasite, how fatty acids flow through Toxoplasma lipid metabolic organelles, especially mitochondria, remains unknown. In this study, we demonstrated that Toxoplasma expresses an active ankyrin repeat containing protein TgACBP2 to coordinate cardiolipin metabolism. Specifically, HMA acquisition resulting from heterologous functional expression of MAF1 rescued growth and lipid metabolism defects in ACBP2-deficient type II parasites, manifesting the complementary role of host mitochondria in parasite cardiolipin metabolism. This work highlights the importance of TgACBP2 in parasite cardiolipin metabolism and provides evidence for metabolic association of host mitochondria with T. gondii.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Sumit K. Matta ◽  
Kelley Patten ◽  
Quiling Wang ◽  
Bae-Hoon Kim ◽  
John D. MacMicking ◽  
...  

ABSTRACT Phagocytic cells are the first line of innate defense against intracellular pathogens, and yet Toxoplasma gondii is renowned for its ability to survive in macrophages, although this paradigm is based on virulent type I parasites. Surprisingly, we find that avirulent type III parasites are preferentially cleared in naive macrophages, independent of gamma interferon (IFN-γ) activation. The ability of naive macrophages to clear type III parasites was dependent on enhanced activity of NADPH oxidase (Nox)-generated reactive oxygen species (ROS) and induction of guanylate binding protein 5 (Gbp5). Macrophages infected with type III parasites (CTG strain) showed a time-dependent increase in intracellular ROS generation that was higher than that induced by type I parasites (GT1 strain). The absence of Nox1 or Nox2, gp91 subunit isoforms of the Nox complex, reversed ROS-mediated clearance of CTG parasites. Consistent with this finding, both Nox1−/− and Nox2−/− mice showed higher susceptibility to CTG infection than wild-type mice. Additionally, Gbp5 expression was induced upon infection and the enhanced clearance of CTG strain parasites was reversed in Gbp5−/− macrophages. Expression of a type I ROP18 allele in CTG prevented clearance in naive macrophages, suggesting that it plays a role counteracting Gbp5. Although ROS and Gbp5 have been linked to activation of the NLRP3 inflammasome, clearance of CTG parasites did not rely on induction of pyroptosis. Collectively, these findings reveal that not all strains of T. gondii are adept at avoiding clearance in macrophages and define new roles for ROS and Gbps in controlling this important intracellular pathogen. IMPORTANCE Toxoplasma infections in humans and other mammals are largely controlled by IFN-γ produced by the activated adaptive immune system. However, we still do not completely understand the role of cell-intrinsic functions in controlling Toxoplasma or other apicomplexan infections. The present work identifies intrinsic activities in naive macrophages in counteracting T. gondii infection. Using an avirulent strain of T. gondii, we highlight the importance of Nox complexes in conferring protection against parasite infection both in vitro and in vivo. We also identify Gbp5 as a novel macrophage factor involved in limiting intracellular infection by avirulent strains of T. gondii. The rarity of human infections caused by type III strains suggests that these mechanisms may also be important in controlling human toxoplasmosis. These findings further extend our understanding of host responses and defense mechanisms that act to control parasitic infections at the cellular level.


2000 ◽  
Vol 279 (6) ◽  
pp. L1066-L1074 ◽  
Author(s):  
Angela Naltner ◽  
Susan Wert ◽  
Jeffrey A. Whitsett ◽  
Cong Yan

Our laboratory has previously demonstrated that retinoic acid nuclear receptor, thyroid transcription factor-1 (TTF-1), and nuclear receptor coactivators such as cAMP response element binding protein (CREB) binding protein (CBP)/p300 and steroid receptor coactivator-1 (SRC-1) form an enhanceosome on the 5′-enhancer region of the human surfactant protein B gene. Immunohistochemistry was used to identify cells that coexpressed CBP/p300, SRC-1, retinoid X receptor, and TTF-1 in the developing and mature lung. CBP/p300 and SRC-1 were expressed in the adult mouse lung, CBP and p300 being present in both alveolar type I and type II epithelial cells and SRC-1 and TTF-1 being restricted to type II epithelial cells. CBP/p300, SRC-1, and TTF-1 were readily detected in the nuclei of developing respiratory epithelial tubules in fetal mice from embryonic days 10 to 18.CBP/p300 and SRC-1 were also detected in developing mesenchymal cells. These coactivators were coexpressed with TTF-1 and SP-B in human pulmonary adenocarcinoma cells (H441 cells) in vitro. Interaction assays with a two-hybrid reporter analysis demonstrated direct interactions among TTF-1, SRC-1, and CBP/p300 in H441 cells. These findings support a role for retinoic acid receptor and nuclear receptor coactivators in the regulation of SP-B gene expression in the respiratory epithelium.


2003 ◽  
pp. 177-184 ◽  
Author(s):  
PJ Enriori ◽  
CR Fischer ◽  
AE Etkin ◽  
RS Calandra ◽  
IA Luthy ◽  
...  

OBJECTIVE: Gross cystic disease (GCD) is the most common benign breast pathology. Although breast cysts are not considered pre-malignant lesions, an increased risk of breast cancer has been reported for patients with type I cysts (Na(+)/K(+)<3). Furthermore, an augmented IGF-I/IGF-binding protein-3 (IGFBP-3) ratio has been described in breast cancer patients. The objective was to evaluate serum IGF-I and binding protein concentrations of type I and type II cyst patients as compared with healthy women. METHODS: Twenty-four patients with type I cysts, 17 with type II cysts and 25 healthy women were evaluated. Serum IGF-I, IGFBP-3 and IGFBP-1 concentrations were measured by IRMA. RESULTS: IGF-I concentrations were significantly higher in sera from patients with type I cysts than in patients with type II cysts. A highly significant decrease of IGFBP-3, the major IGFBP, was found in patients with type I cysts with respect to healthy women, whereas no significant difference was evident between the different cyst types. The IGF-I/IGFBP-3 ratio, an estimate of biologically active IGF-I, was very significantly higher in patients with type I cysts than in both type II patients and healthy women. IGFBP-1 levels were significantly lower in patients with type I than in controls and type II cysts. The IGF-I/IGFBP-1 ratio was significantly higher in patients with type I cysts than in type II bearers and healthy women. Estrogen levels correlated with IGF-I in patients and controls. CONCLUSIONS: The enhanced levels of IGF-I/IGFBP-3 found in patients with type I cysts could eventually be associated with the increased risk of breast cancer described for this group.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Kristina Behnke ◽  
Ursula R. Sorg ◽  
Helmut E. Gabbert ◽  
Klaus Pfeffer

Lymphotoxinβreceptor (LTβR) signaling plays an important role in efficient initiation of host responses to a variety of pathogens, encompassing viruses, bacteria, and protozoans via induction of the type I interferon response. The present study reveals that afterToxoplasma gondiiinfection, LTβR−/−mice show a substantially reduced survival rate when compared to wild-type mice. LTβR−/−mice exhibit an increased parasite load and a more pronounced organ pathology. Also, a delayed increase of serum IL-12p40 and a failure of the protective IFNγresponse in LTβR−/−mice were observed. Serum NO levels in LTβR−/−animals rose later and were markedly decreased compared to wild-type animals. At the transcriptional level, LTβR−/−animals exhibited a deregulated expression profile of several cytokines known to play a role in activation of innate immunity inT. gondiiinfection. Importantly, expression of the IFNγ-regulated murine guanylate-binding protein (mGBP) genes was virtually absent in the lungs of LTβR−/−mice. This demonstrates clearly that the LTβR is essential for the induction of a type II IFN-mediated immune response againstT. gondii. The pronounced inability to effectively upregulate host defense effector molecules such as GBPs explains the high mortality rates of LTβR−/−animals afterT. gondiiinfection.


2021 ◽  
Author(s):  
Mingkai Feng ◽  
Qiao Zhang ◽  
Wenjiao Wu ◽  
Lizhu Chen ◽  
Shuyin Gu ◽  
...  

Guanylate-binding protein 7 (GBP7) belongs to the GBP family, which plays key roles in mediating innate immune responses to intracellular pathogens. Thus far, GBP7 has been reported to be a critical cellular factor against bacterial infection. However, the relationship between GBP7 and influenza A virus (IAV) replication is unknown. Here, we showed that GBP7 expression was significantly up-regulated in the lungs of mice, human peripheral blood mononuclear cells (PBMCs), and A549 cells during IAV infection. Using the CRISPR-Cas9 system and overexpression approaches, it was found that GBP7 knockout inhibited IAV replication by enhancing the expression of IAV-induced type I interferon (IFN), type III IFN, and proinflammatory cytokines. Conversely, overexpression of GBP7 facilitated IAV replication by suppressing the expression of those factors. Furthermore, GBP7 knockout enhanced IAV-induced nuclear factor-κB (NF-κB) activation and phosphorylation of stat1 and stat2, overexpression of GBP7 had the opposite effect. Our data indicated that GBP7 suppresses innate immune responses to IAV infection via NF-κB and JAK-STAT signaling pathways. Taken together, upon IAV infection, the induced GBP7 facilitated IAV replication by suppressing innate immune responses to IAV infection, which suggested that GBP7 might serve as a potential therapeutic target for controlling IAV infection. IMPORTANCE So far, few studies have mentioned the distinct function of guanylate-binding protein 7 (GBP7) on virus infection. Here, we reported that GBP7 expression was significantly up-regulated in the lungs of mice, human PBMCs, and A549 cells during IAV infection. GBP7 facilitated IAV replication by suppressing the expression of type I interferon (IFN), type III IFN, and proinflammatory cytokines. Furthermore, it was indicated that GBP7 suppresses innate immune responses to IAV infection via NF-κB and JAK-STAT signaling pathways. Taken together, our results elucidate a critical role of GBP7 in host immune system during IAV infection.


Sign in / Sign up

Export Citation Format

Share Document