Brain Edema Following an Experimental Missile Wound to the Brain

1990 ◽  
Vol 7 (1) ◽  
pp. 13-20 ◽  
Author(s):  
MICHAEL E. CAREY ◽  
GURCHARAN S. SARNA ◽  
J. BRYAN FARRELL
Keyword(s):  
2020 ◽  
Vol 12 (1) ◽  
pp. 001-008
Author(s):  
Ting Liu ◽  
Xing-Zhi Liao ◽  
Mai-Tao Zhou

Abstract Background Brain edema is one of the major causes of fatality and disability associated with injury and neurosurgical procedures. The goal of this study was to evaluate the effect of ulinastatin (UTI), a protease inhibitor, on astrocytes in a rat model of traumatic brain injury (TBI). Methodology A rat model of TBI was established. Animals were randomly divided into 2 groups – one group was treated with normal saline and the second group was treated with UTI (50,000 U/kg). The brain water content and permeability of the blood–brain barrier were assessed in the two groups along with a sham group (no TBI). Expression of the glial fibrillary acidic protein, endthelin-1 (ET-1), vascular endothelial growth factor (VEGF), and matrix metalloproteinase 9 (MMP-9) were measured by immunohistochemistry and western blot. Effect of UTI on ERK and PI3K/AKT signaling pathways was measured by western blot. Results UTI significantly decreased the brain water content and extravasation of the Evans blue dye. This attenuation was associated with decreased activation of the astrocytes and ET-1. UTI treatment decreased ERK and Akt activation and inhibited the expression of pro-inflammatory VEGF and MMP-9. Conclusion UTI can alleviate brain edema resulting from TBI by inhibiting astrocyte activation and ET-1 production.


2000 ◽  
Vol 92 (6) ◽  
pp. 1016-1022 ◽  
Author(s):  
Ya Hua ◽  
Guohua Xi ◽  
Richard F. Keep ◽  
Julian T. Hoff

Object. Brain edema formation following intracerebral hemorrhage (ICH) appears to be partly related to erythrocyte lysis and hemoglobin release. Erythrocyte lysis may be mediated by the complement cascade, which then triggers parenchymal injury. In this study the authors examine whether the complement cascade is activated after ICH and whether inhibition of complement attenuates brain edema around the hematoma.Methods. This study was divided into three parts. In the first part, 100 µl of autologous blood was infused into the rats' right basal ganglia, and the animals were killed at 24 and 72 hours after intracerebral infusion. Their brains were tested for complement factors C9, C3d, and clusterin (a naturally occurring complement inhibitor) by using immunohistochemical analysis. In the second part of the study, the rats were killed at 24 or 72 hours after injection of 100 µl of blood. The C9 and clusterin proteins were quantitated using Western blot analysis. In the third part, the rats received either 100 µl of blood or 100 µl of blood plus 10 µg of N-acetylheparin (a complement activation inhibitor). Then they were killed 24 or 72 hours later for measurement of brain water and ion contents. It was demonstrated on Western blot analysis that there had been a sixfold increase in C9 around the hematoma 24 hours after the infusion of 100 µl of autologous blood. Marked perihematomal C9 immunoreactivity was detected at 72 hours. Clusterin also increased after ICH and was expressed in neurons 72 hours later. The addition of N-acetylheparin significantly reduced brain edema formation in the ipsilateral basal ganglia at 24 hours (78.5 ± 0.5% compared with 81.6 ± 0.8% in control animals, p < 0.001) and at 72 hours (80.9 ± 2.2% compared with 83.6 ± 0.9% in control animals, p < 0.05) after ICH.Conclusions. It was found that ICH causes complement activation in the brain. Activation of complement and the formation of membrane attack complex contributes to brain edema formation after ICH. Blocking the complement cascade could be an important step in the therapy for ICH.


1986 ◽  
Vol 64 (2) ◽  
pp. 269-276 ◽  
Author(s):  
Andreas Unterberg ◽  
Claudia Dautermann ◽  
Alexander Baethmann ◽  
Werner Müller-Esterl

✓ Evidence has previously been provided that administration of kinins to the cerebrum causes edema and opening of the blood-brain barrier. It has further been shown that these highly active compounds are formed in the brain under pathophysiological conditions. Their formation was enhanced when cerebral blood flow became compromised by an increase in intracranial pressure. Final evidence, however, was not available as to whether specific inhibition of the kallikrein-kinin (KK) system has a therapeutic function in acute head injury. The authors have demonstrated in rabbits that inhibition of the activating enzyme kallikrein by aprotinin or by aprotinin plus soybean trypsin inhibitor (SBTI), which interfere with plasma and tissue kallikrein, is associated with a decrease in formation of posttraumatic swelling after a standardized cold lesion to the brain. Saline-treated control animals with cerebral cold-induced injury had an increase in hemispheric weight 24 hours later of 13.0% ± 0.8% (standard error of the mean) in the damaged hemisphere compared to the contralateral nondamaged hemisphere. Administration of aprotinin or aprotinin plus SBTI led to a significant reduction of hemispheric swelling of 10.1% ± 0.7% or 10.4% ± 0.7%, respectively. In animals receiving SBTI only, hemispheric swelling evolving from cold injury was not significantly reduced. Therapeutic reduction of brain edema by aprotinin cannot be attributed to a nonspecific effect on the blood pressure, which in the experimental groups remained almost normal as compared to the control animals. Failure of SBTI to influence posttraumatic brain swelling may have resulted from disturbances in intravascular coagulation. Measurements of aprotinin in plasma and tissue demonstrate that the inhibitor doses employed are within an effective therapeutic range. Attenuation of brain edema by specific inhibition of the KK system provides evidence for a mediator role of kinins in vasogenic edema. Clinical trials with inhibitors of the KK system in acute forms of traumatic lesions associated with vasogenic edema appear worthwhile.


2021 ◽  
Vol 13 ◽  
Author(s):  
Xiangyue Zhou ◽  
Youwei Li ◽  
Cameron Lenahan ◽  
Yibo Ou ◽  
Minghuan Wang ◽  
...  

Stroke is the destruction of brain function and structure, and is caused by either cerebrovascular obstruction or rupture. It is a disease associated with high mortality and disability worldwide. Brain edema after stroke is an important factor affecting neurologic function recovery. The glymphatic system is a recently discovered cerebrospinal fluid (CSF) transport system. Through the perivascular space and aquaporin 4 (AQP4) on astrocytes, it promotes the exchange of CSF and interstitial fluid (ISF), clears brain metabolic waste, and maintains the stability of the internal environment within the brain. Excessive accumulation of fluid in the brain tissue causes cerebral edema, but the glymphatic system plays an important role in the process of both intake and removal of fluid within the brain. The changes in the glymphatic system after stroke may be an important contributor to brain edema. Understanding and targeting the molecular mechanisms and the role of the glymphatic system in the formation and regression of brain edema after stroke could promote the exclusion of fluids in the brain tissue and promote the recovery of neurological function in stroke patients. In this review, we will discuss the physiology of the glymphatic system, as well as the related mechanisms and therapeutic targets involved in the formation of brain edema after stroke, which could provide a new direction for research against brain edema after stroke.


2017 ◽  
pp. 193-197
Author(s):  
E. V. Melekhina ◽  
E. N. Velikanova ◽  
V. I. Barykin ◽  
I. S. Korolyova ◽  
A. V. Gorelov

2018 ◽  
Vol 9 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Peiyu Li ◽  
Cheng Jiwu

Abstract Background This study evaluates the effect of butin against brain edema in intracerebral hemorrhage (ICH). Methodology ICH was induced by injecting bacterial collagenase in the brain and all the animals were separated into four groups such as control group, ICH group treated with vehicle, Butin 25 and 50 mg/kg group receives butin (25 and 50 mg/kg, i.p.)60 min after the induction of ICH in all animals. One day after neurological score, hemorrhagic injury and expressions of protein responsible for apoptosis and inflammatory cytokines were assessed in the brain tissue of ICH rats. Result Neurological scoring significantly increased and hemorrhagic lesion volume decreased in butin treated group of rats compared to ICH group. However, treatment with butin significantly decreases the ratio of Bax/Bcl-2 and protein expression of Cleaved caspase-3 than ICH group in dose dependent manner. Level of inflammatory mediators such as tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6) in the brain tissues were significantly decreased in the butin treated group than ICH group. In addition butin attenuates the altered signaling pathway of NF-κB in the brain tissues of ICH rats. Conclusion Our study concludes that butin attenuates the altered behavior and neuronal condition in ICH rats by reducing apoptosis and inflammatory response.


1967 ◽  
Vol 9 ◽  
pp. 166b-167
Author(s):  
Takao MITSUNO ◽  
Tadayoshi FUJITA ◽  
Yasushi KIMURA ◽  
Michio NAGAHAMA ◽  
Akira KAGEYAMA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document