scholarly journals inPhocus: “State of Phage” Survey Highlights Widespread Diverse Phage Isolation and Research in 40+ Countries

PHAGE ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 156-169
Author(s):  
Jessica C. Sacher ◽  
Jan Zheng
Keyword(s):  
Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1456
Author(s):  
Sandra Sevilla-Navarro ◽  
Pablo Catalá-Gregori ◽  
Clara Marin

The exploration of novel nonantibiotic interventions in the field, such as the use of bacteriophages, is necessary to avoid the presence of Salmonella. Bacteriophages are a group of viruses widely distributed in nature, strictly associated with the prokaryotic cell. Researchers have demonstrated the success of phage therapy in reducing Salmonella counts in poultry products. However, the impact that phage concentration in the environment may have against certain Salmonella serovars is not well understood. Therefore, the aim of this study was to assess Salmonella phage prevalence in commercial poultry farms in terms of the production type: layers or broilers. The most prevalent Salmonella serovars isolated in poultry production were used for phage isolation. Salmonella specific phages were isolated from 141 layer and broiler farms located in the Valencia region during 2019. Analysis of the samples revealed that 100% presented Salmonella phages, the most prevalent being against serovar S. Enteritidis (93%), followed by S. Virchow (59%), S. Typhimurium (55%), S. Infantis (52%) and S. Ohio (51%). These results indicate that poultry farms could represent an important source of Salmonella phages. Nevertheless, further studies are needed to assess the epidemiology of phages against other serovars present in other countries and their diversity from the point of view of molecular studies.


Author(s):  
Abdallah S. Abdelsattar ◽  
Alyaa Dawoud ◽  
Salsabil Makky ◽  
Rana Nofal ◽  
Ramy K. Aziz ◽  
...  

: Bacteriophages are considered as a potential alternative to fight pathogenic bacteria during the antibiotic resistance era. With their high specificity, they are being widely used in various applications: medicine, food industry, agriculture, animal farms, biotechnology, diagnosis, etc. Many techniques have been designed by different researchers for phage isolation, purification, and amplification, each of which has strengths and weaknesses. However, all aim at having a reasonably pure phage sample that can be further characterized. Phages can be characterized based on their physiological, morphological or inactivation tests. Microscopy, in particular, has opened a wide gate not only for visualizing phage morphological structure, but also for monitoring biochemistry and behavior. Meanwhile, computational analysis of phage genomes provides more details about phage history, lifestyle, and potential for toxigenic or lysogenic conversion, which translate to safety in biocontrol and phage therapy applications. This review summarizes phage application pipelines at different levels and addresses specific restrictions and knowledge gaps in the field. Recently developed computational approaches, which are used in phage genome analysis, are critically assessed. We hope that this assessment provides researchers with useful insights for selection of suitable approaches for Phage-related research aims and applications.


2018 ◽  
Vol 81 (2) ◽  
pp. 272-278 ◽  
Author(s):  
DÁCIL RIVERA ◽  
VIVIANA TOLEDO ◽  
FRANCISCA DI PILLO ◽  
FERNANDO DUEÑAS ◽  
RODOLFO TARDONE ◽  
...  

ABSTRACT The genus Salmonella has more than 2,600 serovars, and this trait is important when considering interventions for Salmonella control. Bacteriophages that are used for biocontrol must have an exclusively lytic cycle and the ability to lyse several Salmonella serovars under a wide range of environmental conditions. Salmonella phages were isolated and characterized from 34 backyard production systems (BPSs) with a history of Salmonella infections. BPSs were visited once, and cloacal or fecal samples were processed for phage isolation. Four hosts, Salmonella serovars Enteritidis, Heidelberg, Infantis, and Typhimurium, were used for phage isolation. The host range of the phages was later characterized with a panel of 23 Salmonella serovars (serovar diversity set) and 31 isolates obtained from the same farms (native set). Genetic relatedness for 10 phages with a wide host range was characterized by restriction fragment length polymorphism, and phages clustered based on the host range. We purified 63 phages, and 36 phage isolates were obtained on Salmonella Enteritidis, 16 on Salmonella Heidelberg, and 11 on Salmonella Infantis. Phages were classified in three clusters: (i) phages with a wide host range (cluster I), (ii) phages that lysed the most susceptible Salmonella serovars (serogroup D) and other isolates (cluster II), and (iii) phages that lysed only isolates of serogroup D (cluster III). The most susceptible Salmonella serovars were Enteritidis, Javiana, and Dublin. Seven of 34 farms yielded phages with a wide host range, and these phages had low levels of genetic relatedness. Our study showed an adaptation of the phages in the sampled BPSs to serogroup D Salmonella isolates and indicated that isolation of Salmonella phages with wide host range differs by farm. A better understanding of the factors driving the Salmonella phage host range could be useful when designing risk-based sampling strategies to obtain phages with a wide lytic host range for biocontrol purposes.


Antibiotics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 269 ◽  
Author(s):  
Ortal Yerushalmy ◽  
Leron Khalifa ◽  
Naama Gold ◽  
Chani Rakov ◽  
Sivan Alkalay-Oren ◽  
...  

A key element in phage therapy is the establishment of large phage collections, termed herein “banks”, where many well-characterized phages, ready to be used in the clinic, are stored. These phage banks serve for both research and clinical purposes. Phage banks are also a key element in clinical phage microbiology, the prior treatment matching of phages and antibiotics to specific bacterial targets. A worldwide network of phage banks can promote a phage-based solution for any isolated bacteria. Herein, we describe the Israeli Phage Bank (IPB) established in the Hebrew University, Jerusalem, which currently has over 300 phages matching 16 bacteria, mainly pathogens. The phage bank is constantly isolating new phages and developing methods for phage isolation and characterization. The information on the phages and bacteria stored in the bank is available online.


2017 ◽  
Vol 10 (12) ◽  
pp. 1481-1485 ◽  
Author(s):  
Aliye Gulmez Saglam ◽  
Mitat Sahin ◽  
Elif Celik ◽  
Ozgur Celebi ◽  
Dogan Akca ◽  
...  

2010 ◽  
Vol 75 (9) ◽  
pp. 1160-1164 ◽  
Author(s):  
P. A. Levashov ◽  
D. V. Popov ◽  
V. M. Popova ◽  
E. L. Zhilenkov ◽  
O. A. Morozova ◽  
...  
Keyword(s):  

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Welkin H Pope ◽  
Charles A Bowman ◽  
Daniel A Russell ◽  
Deborah Jacobs-Sera ◽  
David J Asai ◽  
...  

The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery.


Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 279 ◽  
Author(s):  
Leonid Ushanov ◽  
Besarion Lasareishvili ◽  
Irakli Janashia ◽  
Andreas E. Zautner

Bacteriophages (phages) are the most abundant and diverse biological entities in the biosphere. Due to the rise of multi-drug resistant bacterial strains during the past decade, phages are currently experiencing a renewed interest. Bacteriophages and their derivatives are being actively researched for their potential in the medical and biotechnology fields. Phage applications targeting pathogenic food-borne bacteria are currently being utilized for decontamination and therapy of live farm animals and as a biocontrol measure at the post-harvest level. For this indication, the United States Food and Drug Administration (FDA) has approved several phage products targeting Listeria sp., Salmonella sp. and Escherichia coli. Phage-based applications against Campylobacter jejuni could potentially be used in ways similar to those against Salmonella sp. and Listeria sp.; however, only very few Campylobacter phage products have been approved anywhere to date. The research on Campylobacter phages conducted thus far indicates that highly diverse subpopulations of C. jejuni as well as phage isolation and enrichment procedures influence the specificity and efficacy of Campylobacter phages. This review paper emphasizes conclusions from previous findings instrumental in facilitating isolation of Campylobacter phages and improving specificity and efficacy of the isolates.


Author(s):  
Abdallah Abdelsattar ◽  
Rana Nofal ◽  
Salsabil Makky ◽  
Amera El-Sayed ◽  
Ayman El-Shibiny

In the post antimicrobial era, increasing attention is paid towards using bacteriophage (phage in short) therapy to control antibiotic-resistant bacteria. The first step in phage therapy applications is isolating highly efficient lytic phages or phage cocktails from various sources. When a double-layer- agar with around 0.7% agar in top agar is employed, it results in a low number of phage isolation with a poor resolution, and in many cases, you miss the phage. To address this problem, a low concentration of agar in top agar is examined for better phage isolation. Here, our results proved the efficiency of isolating phage upon formulating a double-layer agar with 0.3% agar in top agar. A sewage sample was collected then phages were isolated, purified, and spotted on a top layer agar with 0.3% agar. The results showed the possibility of isolating a higher number of phages on 0.3% top agar than 0.7%. The finding advocates using 0.3% top agar for the double-layer agar, as it will provide fast, better, and easy phage screening and isolation.


Author(s):  
Abdallah Abdelsattar ◽  
Ayman El-Shibiny

In the post antimicrobial era, increasing attention is paid towards using bacteriophage (phage in short) therapy to control antibiotic-resistant bacteria. The first step in phage therapy applications is isolating highly efficient lytic phages or phage cocktails from various sources. When a double-layer- agar with around 0.7% agar in top agar is employed, it results in a low number of phage isolation with a poor resolution, and in many cases, you miss the phage. To address this problem, a low concentration of agar in top agar is examined for better phage isolation. Here, our results proved the efficiency of isolating phage upon formulating a double-layer agar with 0.3% agar in top agar. A sewage sample was collected then phages were isolated, purified, and spotted on a top layer agar with 0.3% agar. The results showed the possibility of isolating a higher number of phages on 0.3% top agar than 0.7%. The finding advocates using 0.3% top agar for the double-layer agar, as it will provide fast, better, and easy phage screening and isolation.


Sign in / Sign up

Export Citation Format

Share Document