scholarly journals The Impact of Cell Source, Culture Methodology, Culture Location, and Individual Donors on Gene Expression Profiles of Bone Marrow-Derived and Adipose-Derived Stromal Cells

2013 ◽  
Vol 22 (7) ◽  
pp. 1086-1096 ◽  
Author(s):  
Ruurd Torensma ◽  
Henk-Jan Prins ◽  
Ellen Schrama ◽  
Eugène T.P. Verwiel ◽  
Anton C.M. Martens ◽  
...  
2019 ◽  
Vol 120 (7) ◽  
pp. 11842-11852 ◽  
Author(s):  
Simone Ortiz Moura Fideles ◽  
Adriana Cassia Ortiz ◽  
Amanda Freire Assis ◽  
Max Jordan Duarte ◽  
Fabiola Singaretti Oliveira ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1281-1281
Author(s):  
Wolfgang Wagner ◽  
Rainer Saffrich ◽  
Ute Wirkner ◽  
Volker Eckstein ◽  
Jonathon Blake ◽  
...  

Abstract Cell-cell contact between stem cells and cellular determinants of the microenvironment plays an essential role in the regulation of self-renewal and differentiation. The stromal cell line derived from murine fetal liver (AFT024) has been shown to support maintenance of primitive human hematopoietic progenitor cells (HPC) in vitro. We have studied the interaction between HPC (defined as CD34+/CD38− umbilical cord blood cells) and AFT024 and the impact of co-cultivation on the behavior and gene expression of HPC. By time lapse microscopy the mobility and behavior of CD34+/CD38− cells were monitored. Approximately 30% of the CD34+/CD38− cells adhered to the cellular niche through an uropod. CD44 and CD34 were co-localized at the site of contact. Gene expression profiles of CD34+/CD38− cells were then compared upon co-cultivation either with or without AFT024. After cultivation for 16h, 20h, 48h or 72h the HPC were separated form the feeder layer cells by a second FAC-Sort. Differential gene expression was analyzed using our Human Genome cDNA Microarray of over 51,145 ESTs. Among the genes with the highest up-regulation in contact with AFT024 were several genes involved in cell adhesion, proliferation and DNA-modification including tubulin genes, ezrin, complement component 1 q subcomponent 1 (C1QR1), proto-oncogene proteins c-fos and v-fos, proliferating cell nuclear antigen (PCNA), HLA-DR, gamma-glutamyl hydrolase (GGH), minichromosome maintenance deficient 6 (MCM6), uracil-DNA glycolase (UNG) and DNA-methyltransferase 1 (DNMT1). In contrast, genes that were down-regulated after contact with AFT024 included collagenase type iv (MMP2), elastin (ELN) and hemoglobin genes. Differential expression of six genes was confirmed by RT-PCR. Other authors have reported on the differential gene expression profiles of CD34+ cells derived from the bone marrow versus those from G-CSF mobilized blood. As CD34+ cells from the bone marrow might represent cells exposed to the natural HPC niche we have then compared our findings with these experiments. In these comparisons we identified several overlapping genes that are involved in regulation of cell cycle and DNA repair including PCNA, DNMT1, MCM6, MCM2, CDC28 protein kinase regulatory subunit 1B (CKS1B), Topoisomerase II (TOP2a), DNA Ligase 1 (LIG1) and DNA mismatch repair protein MLH1. All these genes were up-regulated among CD34+/CD38− cells upon co-culture with AFT024, as well as among CD34+ cells derived from the bone marrow versus those from peripheral blood. Our studies support the hypothesis that intimate contact and adhesive interaction of HPC with their niche profoundly influenced their proliferative potential and their differentiation program.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Magali Kouidhi ◽  
Phi Villageois ◽  
Carine M. Mounier ◽  
Corinne Ménigot ◽  
Yves Rival ◽  
...  

Animal study findings have revealed that individual fat depots are not functionally equivalent and have different embryonic origins depending on the anatomic location. Mouse bone regeneration studies have also shown that it is essential to match theHoxcode of transplanted cells and host tissues to achieve correct repair. However, subcutaneous fat depots from any donor site are often used in autologous fat grafting. Our study was thus carried out to determine the embryonic origins of human facial (chin) and limb (knee) fat depots and whether they had similar features and molecular matching patterns. Paired chin and knee fat depots were harvested from 11 subjects and gene expression profiles were determined by DNA microarray analyses. Adipose-derived stromal cells (ASCs) from both sites were isolated and analyzed for their capacity to proliferate, form clones, and differentiate. Chin and knee fat depots expressed a differentHOXcode and could have different embryonic origins. ASCs displayed a different phenotype, with chin-ASCs having the potential to differentiate into brown-like adipocytes, whereas knee-ASCs differentiated into white adipocytes. These results highlighted different features for these two fat sites and indicated that donor site selection might be an important factor to be considered when applying adipose tissue in cell-based therapies.


2021 ◽  
Vol 10 ◽  
Author(s):  
Heather Fairfield ◽  
Samantha Costa ◽  
Carolyne Falank ◽  
Mariah Farrell ◽  
Connor S. Murphy ◽  
...  

Within the bone marrow microenvironment, mesenchymal stromal cells (MSCs) are an essential precursor to bone marrow adipocytes and osteoblasts. The balance between this progenitor pool and mature cells (adipocytes and osteoblasts) is often skewed by disease and aging. In multiple myeloma (MM), a cancer of the plasma cell that predominantly grows within the bone marrow, as well as other cancers, MSCs, preadipocytes, and adipocytes have been shown to directly support tumor cell survival and proliferation. Increasing evidence supports the idea that MM-associated MSCs are distinct from healthy MSCs, and their gene expression profiles may be predictive of myeloma patient outcomes. Here we directly investigate how MM cells affect the differentiation capacity and gene expression profiles of preadipocytes and bone marrow MSCs. Our studies reveal that MM.1S cells cause a marked decrease in lipid accumulation in differentiating 3T3-L1 cells. Also, MM.1S cells or MM.1S-conditioned media altered gene expression profiles of both 3T3-L1 and mouse bone marrow MSCs. 3T3-L1 cells exposed to MM.1S cells before adipogenic differentiation displayed gene expression changes leading to significantly altered pathways involved in steroid biosynthesis, the cell cycle, and metabolism (oxidative phosphorylation and glycolysis) after adipogenesis. MM.1S cells induced a marked increase in 3T3-L1 expression of MM-supportive genes including Il-6 and Cxcl12 (SDF1), which was confirmed in mouse MSCs by qRT-PCR, suggesting a forward-feedback mechanism. In vitro experiments revealed that indirect MM exposure prior to differentiation drives a senescent-like phenotype in differentiating MSCs, and this trend was confirmed in MM-associated MSCs compared to MSCs from normal donors. In direct co-culture, human mesenchymal stem cells (hMSCs) exposed to MM.1S, RPMI-8226, and OPM-2 prior to and during differentiation, exhibited different levels of lipid accumulation as well as secreted cytokines. Combined, our results suggest that MM cells can inhibit adipogenic differentiation while stimulating expression of the senescence associated secretory phenotype (SASP) and other pro-myeloma molecules. This study provides insight into a novel way in which MM cells manipulate their microenvironment by altering the expression of supportive cytokines and skewing the cellular diversity of the marrow.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Ben Holmes ◽  
Seung Ho Jung ◽  
Jing Lu ◽  
Jessica A. Wagner ◽  
Liudmilla Rubbi ◽  
...  

Transcranial direct current stimulation (tDCS) has been shown to modulate neuroplasticity. Beneficial effects are observed in patients with psychiatric disorders and enhancement of brain performance in healthy individuals has been observed following tDCS. However, few studies have attempted to elucidate the underlying molecular mechanisms of tDCS in the brain. This study was conducted to assess the impact of tDCS on gene expression within the rat cerebral cortex. Anodal tDCS was applied at 3 different intensities followed by RNA-sequencing and analysis. In each current intensity, approximately 1,000 genes demonstrated statistically significant differences compared to the sham group. A variety of functional pathways, biological processes, and molecular categories were found to be modified by tDCS. The impact of tDCS on gene expression was dependent on current intensity. Results show that inflammatory pathways, antidepressant-related pathways (GTP signaling, calcium ion binding, and transmembrane/signal peptide pathways), and receptor signaling pathways (serotonergic, adrenergic, GABAergic, dopaminergic, and glutamate) were most affected. Of the gene expression profiles induced by tDCS, some changes were observed across multiple current intensities while other changes were unique to a single stimulation intensity. This study demonstrates that tDCS can modify the expression profile of various genes in the cerebral cortex and that these tDCS-induced alterations are dependent on the current intensity applied.


Sign in / Sign up

Export Citation Format

Share Document