scholarly journals Scaffold Fiber Diameter Regulates Human Tendon Fibroblast Growth and Differentiation

2013 ◽  
Vol 19 (3-4) ◽  
pp. 519-528 ◽  
Author(s):  
Cevat Erisken ◽  
Xin Zhang ◽  
Kristen L. Moffat ◽  
William N. Levine ◽  
Helen H. Lu
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Ching-Yan Chloé Yeung ◽  
Erwin M. Schoof ◽  
Michal Tamáš ◽  
Abigail L. Mackey ◽  
Michael Kjaer

Abstract Background Fibroblasts are the powerhouses responsible for the production and assembly of extracellular matrix (ECM). Their activity needs to be tightly controlled especially within the musculoskeletal system, where changes to ECM composition affect force transmission and mechanical loading that are required for effective movement of the body. Extracellular vesicles (EVs) are a mode of cell-cell communication within and between tissues, which has been largely characterised in cancer. However, it is unclear what the role of healthy fibroblast-derived EVs is during tissue homeostasis. Methods Here, we performed proteomic analysis of small EVs derived from primary human muscle and tendon cells to identify the potential functions of healthy fibroblast-derived EVs. Results Mass spectrometry-based proteomics revealed comprehensive profiles for small EVs released from healthy human fibroblasts from different tissues. We found that fibroblast-derived EVs were more similar than EVs from differentiating myoblasts, but there were significant differences between tendon fibroblast and muscle fibroblast EVs. Small EVs from tendon fibroblasts contained higher levels of proteins that support ECM synthesis, including TGFβ1, and muscle fibroblast EVs contained proteins that support myofiber function and components of the skeletal muscle matrix. Conclusions Our data demonstrates a marked heterogeneity among healthy fibroblast-derived EVs, indicating shared tasks between EVs of skeletal muscle myoblasts and fibroblasts, whereas tendon fibroblast EVs could play a fibrotic role in human tendon tissue. These findings suggest an important role for EVs in tissue homeostasis of both tendon and skeletal muscle in humans.


Author(s):  
B. D. Athey ◽  
A. L. Stout ◽  
M. F. Smith ◽  
J. P. Langmore

Although there is general agreement that Inactive chromosome fibers consist of helically packed nucleosomes, the pattern of packing is still undetermined. Only one of the proposed models, the crossed-linker model, predicts a variable diameter dependent on the length of DNA between nucleosomes. Measurements of the fiber diameter of negatively-stained and frozen- hydrated- chromatin from Thyone sperm (87bp linker) and Necturus erythrocytes (48bp linker) have been previously reported from this laboratory. We now introduce a more reliable method of measuring the diameters of electron images of fibrous objects. The procedure uses a modified version of the computer program TOTAL, which takes a two-dimensional projection of the fiber density (represented by the micrograph itself) and projects it down the fiber axis onto one dimension. We illustrate this method using high contrast, in-focus STEM images of TMV and chromatin from Thyone and Necturus. The measured diameters are in quantitative agreement with the expected values for the crossed-linker model for chromatin structure


1989 ◽  
Vol 62 (04) ◽  
pp. 1057-1061 ◽  
Author(s):  
Marcus E Carr ◽  
Patrick L Powers

SummaryThis study was performed to quantitate the impact of several glycosaminoglycans (GAG) on fibrin assembly and structure. Gel formation was monitored as the increase in optical density at 633 nm subsequent to thrombin (2 NIH u/ml) or atroxin (0.10 mg/ml) addition to solutions of buffered fibrinogen (1 mg/ml) or plasma. Gel absorbance was measured as a function of wavelength (400 to 800 nm) and gel fiber diameter and mass/length ratio (μ) were calculated. Chondroitin sulfate A (CSA)shortened the lag phase, enhanced the maximal rate of turbidity increase, and increased the final gel turbidity of fibrin gels formed by thrombin or atroxin. CSA (16 mg/ml) increased fiber μ from 1.3 to 3.1 × 1013 dalton/cm and fiber radius from 6.0 to 8.6 × 10-6 cm in thrombin-induced gels. μ increased from 0.7 to 2.7 × 1013 dalton/cm and fiber radius from 4 to 7.8 × 10-6 cm for atroxin-induced gels. Above 16 mg/ml, CSA caused fibrinogen precipitation in purified solutions but not in plasma. CSA inhibited thrombin-induced plasma clotting of plasma but effects in atroxin-mediated plasma gels paralleled those seen in purified solutions. Chondroitin sulfate B (CSB)-induced changes in fibrin were similar but slightly less dramatic than those seen with CSA. μ increased from 0.9 to 2.0 × 1013 dalton/cm for thrombin-induced fibrin gels and from 0.8 to 2.3 × 1013 dalton/cm for atroxininduced gels. Low molecular weight heparin (Mr = 5100) slowed fibrin assembly and reduced fiber size by 50% in thrombininduced gels. Changes in μ of atroxin-induced gels were much less pronounced (<20%). This study documents pronounced GAGinduced changes in fibrin structure which vary with GAG species and may mediate significant physiologic functions.


Sign in / Sign up

Export Citation Format

Share Document