scholarly journals Phosphorylation of SNAP-23 by the Novel Kinase SNAK Regulates t-SNARE Complex Assembly

1999 ◽  
Vol 10 (12) ◽  
pp. 4033-4041 ◽  
Author(s):  
J.-P. Cabaniols ◽  
V. Ravichandran ◽  
P.A. Roche

The docking and fusion of cargo-containing vesicles with target membranes of eukaryotic cells is mediated by the interaction of SNARE proteins present on both vesicle and target membranes. In many cases, the target membrane SNARE, or t-SNARE, exists as a complex of syntaxin with a member of the SNAP-25 family of palmitoylated proteins. We have identified a novel human kinase SNAK (SNARE kinase) that specifically phosphorylates the nonneuronal t-SNARE SNAP-23 in vivo. Interestingly, only SNAP-23 that is not assembled into t-SNARE complexes is phosphorylated by SNAK, and phosphorylated SNAP-23 resides exclusively in the cytosol. Coexpression with SNAK significantly enhances the stability of unassembled SNAP-23, and as a consequence, the assembly of newly synthesized SNAP-23 with syntaxin is augmented. These data demonstrate that phosphorylation of SNAP-23 by SNAK enhances the kinetics of t-SNARE assembly in vivo.

2003 ◽  
Vol 23 (15) ◽  
pp. 5198-5207 ◽  
Author(s):  
Vadim Atlashkin ◽  
Vera Kreykenbohm ◽  
Eeva-Liisa Eskelinen ◽  
Dirk Wenzel ◽  
Afshin Fayyazi ◽  
...  

ABSTRACT SNARE proteins participate in recognition and fusion of membranes. A SNARE complex consisting of vti1b, syntaxin 8, syntaxin 7, and endobrevin/VAMP-8 which is required for fusion of late endosomes in vitro has been identified recently. Here, we generated mice deficient in vti1b to study the function of this protein in vivo. vti1b-deficient mice had reduced amounts of syntaxin 8 due to degradation of the syntaxin 8 protein, while the amounts of syntaxin 7 and endobrevin did not change. These data indicate that vti1b is specifically required for the stability of a single SNARE partner. vti1b-deficient mice were viable and fertile. Most vti1b-deficient mice were indistinguishable from wild-type mice and did not display defects in transport to the lysosome. However, 20% of the vti1b-deficient mice were smaller. Lysosomal degradation of an endocytosed protein was slightly delayed in hepatocytes derived from these mice. Multivesicular bodies and autophagic vacuoles accumulated in hepatocytes of some smaller vti1b-deficient mice. This suggests that other SNAREs can compensate for the reduction in syntaxin 8 and for the loss of vti1b in most mice even though vti1b shows only 30% amino acid identity with its closest relative.


1977 ◽  
Vol 16 (04) ◽  
pp. 157-162 ◽  
Author(s):  
C. Schümichen ◽  
B. Mackenbrock ◽  
G. Hoffmann

SummaryThe bone-seeking 99mTc-Sn-pyrophosphate compound (compound A) was diluted both in vitro and in vivo and proved to be unstable both in vitro and in vivo. However, stability was much better in vivo than in vitro and thus the in vitro stability of compound A after dilution in various mediums could be followed up by a consecutive evaluation of the in vivo distribution in the rat. After dilution in neutral normal saline compound A is metastable and after a short half-life it is transformed into the other 99mTc-Sn-pyrophosphate compound A is metastable and after a short half-life in bone but in the kidneys. After dilution in normal saline of low pH and in buffering solutions the stability of compound A is increased. In human plasma compound A is relatively stable but not in plasma water. When compound B is formed in a buffering solution, uptake in the kidneys and excretion in urine is lowered and blood concentration increased.It is assumed that the association of protons to compound A will increase its stability at low concentrations while that to compound B will lead to a strong protein bond in plasma. It is concluded that compound A will not be stable in vivo because of a lack of stability in the extravascular space, and that the protein bond in plasma will be a measure of its in vivo stability.


1998 ◽  
Vol 140 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Christian Ungermann ◽  
Benjamin J. Nichols ◽  
Hugh R.B. Pelham ◽  
William Wickner

Homotypic vacuole fusion in yeast requires Sec18p (N-ethylmaleimide–sensitive fusion protein [NSF]), Sec17p (soluble NSF attachment protein [α-SNAP]), and typical vesicle (v) and target membrane (t) SNAP receptors (SNAREs). We now report that vacuolar v- and t-SNAREs are mainly found with Sec17p as v–t-SNARE complexes in vivo and on purified vacuoles rather than only transiently forming such complexes during docking, and disrupting them upon fusion. In the priming reaction, Sec18p and ATP dissociate this v–t-SNARE complex, accompanied by the release of Sec17p. SNARE complex structure governs each functional aspect of priming, as the v-SNARE regulates the rate of Sec17p release and, in turn, Sec17p-dependent SNARE complex disassembly is required for independent function of the two SNAREs. Sec17p physically and functionally interacts largely with the t-SNARE. (a) Antibodies to the t-SNARE, but not the v-SNARE, block Sec17p release. (b) Sec17p is associated with the t-SNARE in the absence of v-SNARE, but is not bound to the v-SNARE without t-SNARE. (c) Vacuoles with t-SNARE but no v-SNARE still require Sec17p/Sec18p priming, whereas their fusion partners with v-SNARE but no t-SNARE do not. Sec18p thus acts, upon ATP hydrolysis, to disassemble the v–t-SNARE complex, prime the t-SNARE, and release the Sec17p to allow SNARE participation in docking and fusion. These studies suggest that the analogous ATP-dependent disassembly of the 20-S complex of NSF, α-SNAP, and v- and t-SNAREs, which has been studied in detergent extracts, corresponds to the priming of SNAREs for docking rather than to the fusion of docked membranes.


1999 ◽  
Vol 146 (2) ◽  
pp. 333-344 ◽  
Author(s):  
Chavela M. Carr ◽  
Eric Grote ◽  
Mary Munson ◽  
Frederick M. Hughson ◽  
Peter J. Novick

Proteins of the Sec1 family have been shown to interact with target-membrane t-SNAREs that are homologous to the neuronal protein syntaxin. We demonstrate that yeast Sec1p coprecipitates not only the syntaxin homologue Ssop, but also the other two exocytic SNAREs (Sec9p and Sncp) in amounts and in proportions characteristic of SNARE complexes in yeast lysates. The interaction between Sec1p and Ssop is limited by the abundance of SNARE complexes present in sec mutants that are defective in either SNARE complex assembly or disassembly. Furthermore, the localization of green fluorescent protein (GFP)-tagged Sec1p coincides with sites of vesicle docking and fusion where SNARE complexes are believed to assemble and function. The proposal that SNARE complexes act as receptors for Sec1p is supported by the mislocalization of GFP-Sec1p in a mutant defective for SNARE complex assembly and by the robust localization of GFP-Sec1p in a mutant that fails to disassemble SNARE complexes. The results presented here place yeast Sec1p at the core of the exocytic fusion machinery, bound to SNARE complexes and localized to sites of secretion.


2015 ◽  
Vol 59 (11) ◽  
pp. 6741-6748 ◽  
Author(s):  
Meha P. Patel ◽  
Bartlomiej G. Fryszczyn ◽  
Timothy Palzkill

ABSTRACTThe widespread use of oxyimino-cephalosporin antibiotics drives the evolution of the CTX-M family of β-lactamases that hydrolyze these drugs and confer antibiotic resistance. Clinically isolated CTX-M enzymes carrying the P167S or D240G active site-associated adaptive mutation have a broadened substrate profile that includes the oxyimino-cephalosporin antibiotic ceftazidime. The D240G substitution is known to reduce the stability of CTX-M-14 β-lactamase, and the P167S substitution is shown here to also destabilize the enzyme. Proteins are marginally stable entities, and second-site mutations that stabilize the enzyme can offset a loss in stability caused by mutations that enhance enzyme activity. Therefore, the evolution of antibiotic resistance enzymes can be dependent on the acquisition of stabilizing mutations. The A77V substitution is present in CTX-M extended-spectrum β-lactamases (ESBLs) from a number of clinical isolates, suggesting that it may be important in the evolution of antibiotic resistance in this family of β-lactamases. In this study, the effects of the A77V substitution in the CTX-M-14 model enzyme were characterized with regard to the kinetic parameters for antibiotic hydrolysis as well as enzyme expression levelsin vivoand protein stabilityin vitro. The A77V substitution has little effect on the kinetics of oxyimino-cephalosporin hydrolysis, but it stabilizes the CTX-M enzyme and compensates for the loss of stability resulting from the P167S and D240G mutations. The acquisition of global stabilizing mutations, such as A77V, is an important feature in β-lactamase evolution and a common mechanism in protein evolution.


2020 ◽  
Author(s):  
R Venkat Kalyana Sundaram ◽  
Huaizhou Jin ◽  
Feng Li ◽  
Tong Shu ◽  
Jeff Coleman ◽  
...  

ABSTRACTSynaptic vesicle fusion is mediated by membrane-bridging complexes formed by SNARE proteins - VAMP2 on the vesicle and Syntaxin-1/SNAP25 on the pre-synaptic membrane. Accumulating evidence suggest that chaperones Munc18-1 and Munc13-1 co-operatively catalyze SNARE assembly via an intermediate ‘template’ complex containing Syntaxin-1 and VAMP2. How SNAP25 is chaperoned into this nascent complex remains a mystery. Here we report that Munc13-1 recruits SNAP25 to initiate the ternary SNARE complex assembly by direct binding, as judged by bulk FRET spectroscopy and single-molecule optical tweezer studies. Detailed structure-function analyses show that the binding is mediated by the Munc13-1 MUN domain and is specific for the SNAP25 ‘linker’ region that connects the two SNARE motifs. Consequently, freely diffusing SNAP25 molecules on phospholipid bilayers are concentrated and presumably bound in ~1:1 stoichiometry by the self-assembled Munc13-1 nanoclusters. Our data suggests that Munc13-1’s capacity to bind all three synaptic SNARE proteins likely underlie its chaperone function.


2019 ◽  
Author(s):  
Pengxing Cao ◽  
Katharine A. Collins ◽  
Sophie Zaloumis ◽  
Thanaporn Wattanakul ◽  
Joel Tarning ◽  
...  

AbstractEvery year over two hundred million people are infected with the malaria parasite. Renewed efforts to eliminate malaria has highlighted the potential to interrupt transmission from humans to mosquitoes which is mediated through the gametocytes. Reliable prediction of transmission requires an improved understanding of in vivo kinetics of gametocytes. Here we study the population dynamics of Plasmodium falciparum gametocytes in human hosts by establishing a framework which incorporates improved measurements of parasitaemia in humans, a novel mathematical model of gametocyte dynamics, and model validation using a Bayesian hierarchical inference method. We found that the novel mathematical model provides an excellent fit to the available clinical data from 17 volunteers infected with P. falciparum, and reliably predicts observed gametocyte levels. We estimated the P. falciparum’s sexual commitment rate and gametocyte sequestration time in humans to be 0.54% (95% credible interval: 0.30-1.00) per life cycle and 8.39 (6.54-10.59) days respectively. Furthermore, we used the data-calibrated model to predict the effects of those gametocyte dynamics parameters on human-to-mosquito transmissibility, providing a method to link within-human host kinetics of malaria infection to epidemiological-scale infection and transmission patterns.


2017 ◽  
Author(s):  
Daniel R. Peet ◽  
Nigel J. Burroughs ◽  
Robert A. Cross

Kinesin-1 is a nanoscale molecular motor that walks towards the fast growing (plus) ends of microtubules (MTs), hauling molecular cargo to specific reaction sites in cells. Kinesin-driven transport is central to the self-organisation of eukaryotic cells and shows great promise as a tool for nano-engineering1,2. Recent work hints that kinesin may also play a role in modulating the stability of its MT track, both in vitro3-5 and in vivo6, but results are conflicting7-9 and mechanisms are unclear. Here we report a new dimension to the kinesin-MT interaction, whereby strong-state (ATP-bound and apo) kinesin-1 motor domains inhibit the shrinkage of GDP-MTs by up to 2 orders of magnitude and expand their lattice spacing by ~1.6%. Our data reveal an unexpected new mechanism by which the mechanochemical cycles of kinesin and tubulin interlock, allowing motile kinesins to influence the structure, stability and mechanics of their MT track.


2007 ◽  
Vol 18 (6) ◽  
pp. 2037-2046 ◽  
Author(s):  
Tabrez J. Siddiqui ◽  
Olga Vites ◽  
Alexander Stein ◽  
Rainer Heintzmann ◽  
Reinhard Jahn ◽  
...  

Neuronal exocytosis is driven by the formation of SNARE complexes between synaptobrevin 2 on synaptic vesicles and SNAP-25/syntaxin 1 on the plasma membrane. It has remained controversial, however, whether SNAREs are constitutively active or whether they are down-regulated until fusion is triggered. We now show that synaptobrevin in proteoliposomes as well as in purified synaptic vesicles is constitutively active. Potential regulators such as calmodulin or synaptophysin do not affect SNARE activity. Substitution or deletion of residues in the linker connecting the SNARE motif and transmembrane region did not alter the kinetics of SNARE complex assembly or of SNARE-mediated fusion of liposomes. Remarkably, deletion of C-terminal residues of the SNARE motif strongly reduced fusion activity, although the overall stability of the complexes was not affected. We conclude that although complete zippering of the SNARE complex is essential for membrane fusion, the structure of the adjacent linker domain is less critical, suggesting that complete SNARE complex assembly not only connects membranes but also drives fusion.


Sign in / Sign up

Export Citation Format

Share Document