scholarly journals Polymerization Defects within Human Telomerase Are Distinct from Telomerase RNA and TEP1 Binding

2000 ◽  
Vol 11 (10) ◽  
pp. 3329-3340 ◽  
Author(s):  
Tara L. Beattie ◽  
Wen Zhou ◽  
Murray O. Robinson ◽  
Lea Harrington

The minimal, active core of human telomerase is postulated to contain two components, the telomerase RNA hTER and the telomerase reverse transcriptase hTERT. The reconstitution of human telomerase activity in vitro has facilitated the identification of sequences within the telomerase RNA and the RT motifs of hTERT that are essential for telomerase activity. However, the precise role of residues outside the RT domain of hTERT is unknown. Here we have delineated several regions within hTERT that are important for telomerase catalysis, primer use, and interaction with the telomerase RNA and the telomerase-associated protein TEP1. In particular, certain deletions of the amino and carboxy terminus of hTERT that retained an interaction with telomerase RNA and TEP1 were nonetheless completely inactive in vitro and in vivo. Furthermore, hTERT truncations lacking the amino terminus that were competent to bind the telomerase RNA were severely compromised for the ability to elongate telomeric and nontelomeric primers. These results suggest that the interaction of telomerase RNA with hTERT can be functionally uncoupled from polymerization, and that there are regions outside the RT domain of hTERT that are critical for telomerase activity and primer use. These results establish that the human telomerase RT possesses unique polymerization determinants that distinguish it from other RTs.

2000 ◽  
Vol 20 (11) ◽  
pp. 3764-3771 ◽  
Author(s):  
Silvia Misiti ◽  
Simona Nanni ◽  
Giulia Fontemaggi ◽  
Yu-Sheng Cong ◽  
Jianping Wen ◽  
...  

ABSTRACT In mammals, molecular mechanisms and factors involved in the tight regulation of telomerase expression and activity are still largely undefined. In this study, we provide evidence for a role of estrogens and their receptors in the transcriptional regulation of hTERT, the catalytic subunit of human telomerase and, consequently, in the activation of the enzyme. Through a computer analysis of the hTERT 5′-flanking sequences, we identified a putative estrogen response element (ERE) which was capable of binding in vitro human estrogen receptor α (ERα). In vivo DNA footprinting revealed specific modifications of the ERE region in ERα-positive but not ERα-negative cells upon treatment with 17β-estradiol (E2), indicative of estrogen-dependent chromatin remodelling. In the presence of E2, transient expression of ERα but not ERβ remarkably increased hTERT promoter activity, and mutation of the ERE significantly reduced this effect. No telomerase activity was detected in human ovary epithelial cells grown in the absence of E2, but the addition of the hormone induced the enzyme within 3 h of treatment. The expression of hTERT mRNA and protein was induced in parallel with enzymatic activity. This prompt estrogen modulation of telomerase activity substantiates estrogen-dependent transcriptional regulation of the hTERT gene. The identification of hTERT as a target of estrogens represents a novel finding which advances the understanding of telomerase regulation in hormone-dependent cells and has implications for a potential role of hormones in their senescence and malignant conversion.


2001 ◽  
Vol 21 (18) ◽  
pp. 6151-6160 ◽  
Author(s):  
Tara L. Beattie ◽  
Wen Zhou ◽  
Murray O. Robinson ◽  
Lea Harrington

ABSTRACT The telomerase enzyme exists as a large complex (∼1,000 kDa) in mammals and at minimum is composed of the telomerase RNA and the catalytic subunit telomerase reverse transcriptase (TERT). In Saccharomyces cerevisiae, telomerase appears to function as an interdependent dimer or multimer in vivo (J. Prescott and E. H. Blackburn, Genes Dev. 11:2790–2800, 1997). However, the requirements for multimerization are not known, and it remained unclear whether telomerase exists as a multimer in other organisms. We show here that human TERT (hTERT) forms a functional multimer in a rabbit reticulocyte lysate reconstitution assay and in human cell extracts. Two separate, catalytically inactive TERT proteins can complement each other in trans to reconstitute catalytic activity. This complementation requires the amino terminus of one hTERT and the reverse transcriptase and C-terminal domains of the second hTERT. The telomerase RNA must associate with only the latter hTERT for reconstitution of telomerase activity to occur. Multimerization of telomerase also facilitates the recognition and elongation of substrates in vitro and in vivo. These data suggest that the catalytic core of human telomerase may exist as a functionally cooperative dimer or multimer in vivo.


2019 ◽  
Vol 116 (49) ◽  
pp. 24542-24550 ◽  
Author(s):  
Jiarui Song ◽  
Dhenugen Logeswaran ◽  
Claudia Castillo-González ◽  
Yang Li ◽  
Sreyashree Bose ◽  
...  

Telomerase is essential for maintaining telomere integrity. Although telomerase function is widely conserved, the integral telomerase RNA (TR) that provides a template for telomeric DNA synthesis has diverged dramatically. Nevertheless, TR molecules retain 2 highly conserved structural domains critical for catalysis: a template-proximal pseudoknot (PK) structure and a downstream stem-loop structure. Here we introduce the authentic TR from the plant Arabidopsis thaliana, called AtTR, identified through next-generation sequencing of RNAs copurifying with Arabidopsis TERT. This RNA is distinct from the RNA previously described as the templating telomerase RNA, AtTER1. AtTR is a 268-nt Pol III transcript necessary for telomere maintenance in vivo and sufficient with TERT to reconstitute telomerase activity in vitro. Bioinformatics analysis identified 85 AtTR orthologs from 3 major clades of plants: angiosperms, gymnosperms, and lycophytes. Through phylogenetic comparisons, a secondary structure model conserved among plant TRs was inferred and verified using in vitro and in vivo chemical probing. The conserved plant TR structure contains a template-PK core domain enclosed by a P1 stem and a 3′ long-stem P4/5/6, both of which resemble a corresponding structural element in ciliate and vertebrate TRs. However, the plant TR contains additional stems and linkers within the template-PK core, allowing for expansion of PK structure from the simple PK in the smaller ciliate TR during evolution. Thus, the plant TR provides an evolutionary bridge that unites the disparate structures of previously characterized TRs from ciliates and vertebrates.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e14631-e14631
Author(s):  
T. Xu ◽  
Y. Xu ◽  
R. Lao ◽  
K. He ◽  
L. Xue ◽  
...  

e14631 Background: Telomerase-interference (TI), a novel therapeutic strategy, exploits the high telomerase activity in prostate cancer by introducing a mutated telomerase RNA (MT-Ter) that encodes toxic telomeres. Until now, TI has been tested by targeting human telomerase in tumor cells xenografted into immuno-deficient mice, an inadequate model for predicting efficacy and toxicity. We designed and validated 2 new TI gene constructs that specifically target murine telomerase RNA (mTER), enabling the study of TI in preclinical mouse models that are immuno-competent and that develop endogenous prostate tumors. Methods: We designed 2 constructs and cloned them into a lentiviral delivery system: MT-mTER and siRNA against wild type mTer (α-mTer-siRNA). Using a mouse prostate cancer cell line, E4, we tested the 2 constructs for expression (RT-PCR), telomerase activity (TRAP), and biologic activity (53bp1 DNA damage staining, MTS growth assay, TUNEL and caspase apoptosis assays), as well as in vivo efficacy (NOD-SCID allografts). Results: We confirmed MT-mTER expression (∼50-fold) and showed that α-mTer-siRNA specifically depleted WT-mTER (80% reduction) but not MT-mTER when the 2 constructs are co-expressed; thus, the 2 constructs in combination effectively substituted MT-mTer for WT-mTer in the mouse prostate cancer cells. MT-mTER caused mutant telomeric repeats (TTTGGG instead of TTAGGG) to be added to the ends of telomeres, resulting in rapid telomeric uncapping marked by 53bp1 DNA damage foci (an average 7.5 foci/cell vs. 1.4 foci/cell in vector control). This, in turn, led to rapid and significant apoptosis (>90% TUNEL and caspase +) and growth inhibition in vitro (90% reduction by MTS) and in vivo (75% reduction in tumor allograft size). Conclusions: We successfully designed and validated MT-mTer and α-mTer-siRNA, 2 novel gene constructs that specifically target and co-opt murine telomerase activity within mouse prostate cancer cells. These constructs offer a significant advantage, as they can be used to investigate TI in immuno-competent mice that develop prostate cancer, thereby modeling actual human disease and testing TI-based therapies in a much more informative and authentic manner. No significant financial relationships to disclose.


2021 ◽  
Author(s):  
Xueqiang Deng ◽  
Xiaowei Fu ◽  
Hong Teng ◽  
Lu Fang ◽  
Bo Liang ◽  
...  

Abstract Background: Pancreatic cancer (PC) is one of the most fatal digestive system cancers. tripartite motif-29 (TRIM29) has been reported as oncogene in several human cancers. However, the precise role and underlying signal cascade of TRIM29 in PC progression remain unclear.Methods: Western blot, qRT-PCR and immunohistochemistry were used to analyze TRIM29 and Yes-associated protein 1 (YAP1) levels. CCK8 assays, EdU assays and flow cytometry were designed to explore the function and potential mechanism of TRIM29 and YAP1 in the proliferation of PC. Next, a nude mouse model of PC was established for validating the roles of TRIM29 and YAP1 in vivo. The relationship among TRIM29 and YAP1 was explored by co-immunoprecipitation and in vitro ubiquitination assay.Results: TRIM29 and YAP1 was significantly upregulated in PC patient samples, and TRIM29 expression was closely related to a malignant phenotype and poorer overall survival (OS) of PC patients. Functional assays revealed that TRIM29 knockdown suppresses cell growth, arrests cell cycle progression and promotes cell apoptosis of PC cells in vivo and in vitro. Furthermore, the rescue experiments demonstrated that TRIM29-induced proliferation is dependent on YAP1 in PC cells. Mechanistically, TRIM29 regulates YAP1 expression by directly binding to YAP1, and reduced its ubiquitination and degradation.Conclusion: Taken together, these results identify a novel mechanism used by PC growth, and provide insight regarding the role of TRIM29 in PC.


2006 ◽  
Vol 397 (3) ◽  
pp. 399-406 ◽  
Author(s):  
Scott J. Garforth ◽  
Yan Yun Wu ◽  
Vinayaka R. Prasad

Human and mouse telomerases show a high degree of similarity in both the protein and RNA components. Human telomerase is more active and more processive than the mouse telomerase. There are two key differences between hTR [human TR (telomerase RNA)] and mTR (mouse TR) structures. First, the mouse telomerase contains only 2 nt upstream of its template region, whereas the human telomerase contains 45 nt. Secondly, the template region of human telomerase contains a 5-nt alignment domain, whereas that of mouse has only 2 nt. We hypothesize that these differences are responsible for the differential telomerase activities. Mutations were made in both the hTR and mTR, changing the template length and the length of the RNA upstream of the template, and telomerase was reconstituted in vitro using mouse telomerase reverse transcriptase generated by in vitro translation. We show that the sequences upstream of the template region, with a potential to form a double-stranded helix (the P1 helix) as in hTR, increase telomerase activity. The longer alignment domain increases telomerase activity only in the context of the P1 helix. Thus the TR contributes to regulating the level of activity of mammalian telomerases.


2015 ◽  
pp. MCB.00794-15 ◽  
Author(s):  
Melissa A. Mefford ◽  
David C. Zappulla

Telomerase is a specialized ribonucleoprotein complex that extends the 3’ ends of chromosomes to counteract telomere shortening. However, increased telomerase activity is associated with ∼90% of human cancers. The telomerase enzyme minimally requires an RNA (hTR) and a specialized reverse transcriptase protein (TERT) for activityin vitro. Understanding the structure-function relationships within hTR has important implications for human disease. For the first time, we have tested the physical-connectivity requirements in the 451-nucleotide hTR RNA using circular permutations, which reposition the 5’ and 3’ ends. Our extensivein vitroanalysis identified three classes of hTR circular permutants with altered function. First, circularly permuting 3’ of the template causes specific defects in repeat-addition processivity, revealing that the template-recognition element found in ciliates is conserved in human telomerase RNA. Second, seven circular permutations residing within the catalytically important core and CR4/5 domains completely abolish telomerase activity, unveiling mechanistically critical portions of these domains. Third, several circular permutations between the core and CR4/5 significantly increase telomerase activity. Our extensive circular permutation results provide insights into the architecture and coordination of human hTR and highlight where the RNA could be targeted for the development of anti-aging and anti-cancer therapeutics.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245166
Author(s):  
Al Shaimaa Hasan ◽  
Lan Luo ◽  
Satoko Baba ◽  
Tao-Sheng Li

Compared to the age-matched men, the incidence of cardiovascular diseases is lower in premenopausal but higher in postmenopausal women, suggesting the cardio-protective role of estrogen in females. Although cardiac stem cells (CSCs) express estrogen receptors, yet the effects of estrogen on CSCs remain unclear. In this study, we investigated the potential role of estrogen in maintaining the quality of CSCs by in vivo and in vitro experiments. For the in vivo study, estrogen deficiency was induced by ovariectomy in 6-weeks-old C57BL/6 female mice, and then randomly given 17β-estradiol (E2) replacements at a low dose (0.01 mg/60 days) and high dose (0.18 mg/60 days), or vehicle treatment. All mice were killed 2 months after treatments, and heart tissues were collected for ex vivo expansion of CSCs. Compared to age-matched healthy controls, estrogen deficiency slightly decreased the yield of CSCs with significantly lower telomerase activity and more DNA damage. Interestingly, E2 replacements at low and high doses significantly increased the yield of CSCs and reversed the quality impairment of CSCs following estrogen deficiency. For the in vitro study, twice-passaged CSCs from the hearts of adult healthy female mice were cultured with the supplement of 0.01, 0.1, and 1 μM E2 in the medium for 3 days. We found that E2 supplement increased c-kit expression, increased proliferative activity, improved telomerase activity, and reduced DNA damage of CSCs in a dose-dependent manner. Our data suggested the potential role of estrogen in maintaining the quality of CSCs, providing new insight into the cardio-protective effects of estrogen.


2004 ◽  
Vol 279 (50) ◽  
pp. 51745-51748 ◽  
Author(s):  
Soma S. R. Banik ◽  
Christopher M. Counter

The addition of telomeric repeats to chromosome ends by the enzyme telomerase is a highly orchestrated process. Although much is known regarding telomerase catalytic activityin vitro, less is known about how this activity is regulatedin vivoto ensure proper telomere elongation. One protein that appears to be involved in negatively regulating telomerase functionin vivois PinX1 because overexpression of PinX1 inhibits telomerase activity and causes telomere shortening. To understand the nature of this repression, we characterized the interactions among PinX1 and the core components of telomerase, the human telomerase reverse transcriptase (hTERT) and associated human telomerase RNA (hTR). We now show thatin vitroPinX1 binds directly to the hTERT protein subunit, primarily to the hTR-binding domain, as well as to the hTR subunit. However, in a cellular context, the association of PinX1 with hTR is dependent on the presence of hTERT. Taken together, we suggest that PinX1 represses telomerase activityin vivoby binding to the assembled hTERT·hTR complex.


2016 ◽  
Vol 113 (27) ◽  
pp. 7655-7660 ◽  
Author(s):  
Dongqing Xu ◽  
Yan Jiang ◽  
Jigang Li ◽  
Fang Lin ◽  
Magnus Holm ◽  
...  

BBX21 (also known as SALT TOLERANCE HOMOLOG 2), a B-box (BBX)-containing protein, has been previously identified as a positive regulator of light signaling; however, the precise role of BBX21 in regulating seedling photomorphogenesis remains largely unclear. In this study, we report that CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) interacts with BBX21 in vivo and is able to ubiquitinate BBX21 in vitro. Thus, BBX21 is targeted for 26S proteasome-mediated degradation in dark-grown Arabidopsis seedlings in a COP1-dependent manner. Moreover, we show that BBX21 binds to the T/G-box in the ELONGATED HYPOCOTYL 5 (HY5) promoter and directly activates HY5 expression in the light. Transgenic seedlings overexpressing BBX21 exhibit dramatically shortened hypocotyls in the light, and this phenotype is dependent on a functional HY5. Taken together, our data suggest a molecular base underlying BBX21-mediated seedling photomorphogenesis, indicating that BBX21 is a pivotal component involved in the COP1-HY5 regulatory hub.


Sign in / Sign up

Export Citation Format

Share Document