scholarly journals Structural Requirements of Tom40 for Assembly into Preexisting TOM Complexes of Mitochondria

2001 ◽  
Vol 12 (5) ◽  
pp. 1189-1198 ◽  
Author(s):  
Doron Rapaport ◽  
Rebecca D. Taylor ◽  
Michael Käser ◽  
Thomas Langer ◽  
Walter Neupert ◽  
...  

Tom40 is the major subunit of the translocase of the outer mitochondrial membrane (the TOM complex). To study the assembly pathway of Tom40, we have followed the integration of the protein into the TOM complex in vitro and in vivo using wild-type and altered versions of the Neurospora crassa Tom40 protein. Upon import into isolated mitochondria, Tom40 precursor proteins lacking the first 20 or the first 40 amino acid residues were assembled as the wild-type protein. In contrast, a Tom40 precursor lacking residues 41 to 60, which contains a highly conserved region of the protein, was arrested at an intermediate stage of assembly. We constructed mutant versions of Tom40 affecting this region and transformed the genes into a sheltered heterokaryon containing a tom40 null nucleus. Homokaryotic strains expressing the mutant Tom40 proteins had growth rate defects and were deficient in their ability to form conidia. Analysis of the TOM complex in these strains by blue native gel electrophoresis revealed alterations in electrophoretic mobility and a tendency to lose Tom40 subunits from the complex. Thus, both in vitro and in vivo studies implicate residues 41 to 60 as containing a sequence required for proper assembly/stability of Tom40 into the TOM complex. Finally, we found that TOM complexes in the mitochondrial outer membrane were capable of exchanging subunits in vitro. A model is proposed for the integration of Tom40 subunits into the TOM complex.

Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 320
Author(s):  
Thaís Pereira da Silva ◽  
Fernando Jacomini de Castro ◽  
Larissa Vuitika ◽  
Nayanne Louise Costacurta Polli ◽  
Bruno César Antunes ◽  
...  

Phospholipases-D (PLDs) found in Loxosceles spiders’ venoms are responsible for the dermonecrosis triggered by envenomation. PLDs can also induce other local and systemic effects, such as massive inflammatory response, edema, and hemolysis. Recombinant PLDs reproduce all of the deleterious effects induced by Loxosceles whole venoms. Herein, wild type and mutant PLDs of two species involved in accidents—L. gaucho and L. laeta—were recombinantly expressed and characterized. The mutations are related to amino acid residues relevant for catalysis (H12-H47), magnesium ion coordination (E32-D34) and binding to phospholipid substrates (Y228 and Y228-Y229-W230). Circular dichroism and structural data demonstrated that the mutant isoforms did not undergo significant structural changes. Immunoassays showed that mutant PLDs exhibit conserved epitopes and kept their antigenic properties despite the mutations. Both in vitro (sphingomyelinase activity and hemolysis) and in vivo (capillary permeability, dermonecrotic activity, and histopathological analysis) assays showed that the PLDs with mutations H12-H47, E32-D34, and Y228-Y229-W230 displayed only residual activities. Results indicate that these mutant toxins are suitable for use as antigens to obtain neutralizing antisera with enhanced properties since they will be based on the most deleterious toxins in the venom and without causing severe harmful effects to the animals in which these sera are produced.


1999 ◽  
Vol 181 (10) ◽  
pp. 3010-3017 ◽  
Author(s):  
Heather A. Cook ◽  
Carol A. Kumamoto

ABSTRACT SecB is a cytosolic protein required for rapid and efficient export of particular periplasmic and outer membrane proteins inEscherichia coli. SecB promotes export by stabilizing newly synthesized precursor proteins in a nonnative conformation and by targeting the precursors to the inner membrane. Biochemical studies suggest that SecB facilitates precursor targeting by binding to the SecA protein, a component of the membrane-embedded translocation apparatus. To gain more insight into the functional interaction of SecB and SecA, in vivo, mutations in the secA locus that compensate for the export defect caused by the secBmissense mutation secBL75Q were isolated. Two suppressors were isolated, both of which led to the overproduction of wild-type SecA protein. In vivo studies demonstrated that the SecBL75Q mutant protein releases precursor proteins at a lower rate than does wild-type SecB. Increasing the level of SecA protein in the cell was found to reverse this slow-release defect, indicating that overproduction of SecA stimulates the turnover of SecBL75Q-precursor complexes. These findings lend additional support to the proposed pathway for precursor targeting in which SecB promotes targeting to the translocation apparatus by binding to the SecA protein.


Blood ◽  
2021 ◽  
Author(s):  
Kaushik Das ◽  
Shiva Keshava ◽  
Shabbir A Ansari ◽  
Vijay Kumar Reddy Kondreddy ◽  
Charles Esmon ◽  
...  

Recombinant FVIIa (rFVIIa) is used as a hemostatic agent to treat bleeding disorders in hemophilia patients with inhibitors and other groups of patients. Our recent studies showed that FVIIa binds endothelial cell protein C receptor (EPCR) and induces protease-activated receptor 1 (PAR1)-mediated biased signaling. The importance of FVIIa-EPCR-PAR1-mediated signaling in hemostasis is unknown. In the present study, we show that FVIIa induces the release of extracellular vesicles (EVs) from endothelial cells both in vitro and in vivo. Silencing of EPCR or PAR1 in endothelial cells blocked the FVIIa-induced generation of EVs. Consistent with these data, FVIIa treatment enhanced the release of EVs from murine brain endothelial cells isolated from wild-type, EPCR overexpressors, and PAR1-R46Q mutant mice, but not EPCR-deficient or PAR1-R41Q mutant mice. In vivo studies revealed that administration of FVIIa to wild-type, EPCR overexpressors, and PAR1-R46Q mutant mice, but not EPCR-deficient or PAR1-R41Q mutant mice, increase the number of circulating EVs. EVs released in response to FVIIa treatment exhibit enhanced procoagulant activity. Infusion of FVIIa-generated EVs and not control EVs to platelet-depleted mice increased thrombin generation at the site of injury and reduced blood loss. Administration of FVIIa-generated EVs or generation of EVs endogenously by administering FVIIa augmented the hemostatic effect of FVIIa. Overall, our data reveal that FVIIa treatment, through FVIIa-EPCR-PAR1 signaling, releases EVs from the endothelium into the circulation, and these EVs contribute to the hemostatic effect of FVIIa.


2009 ◽  
Vol 296 (3) ◽  
pp. E549-E558 ◽  
Author(s):  
Eric P. Plaisance ◽  
Martina Lukasova ◽  
Stefan Offermanns ◽  
Youyan Zhang ◽  
Guoqing Cao ◽  
...  

Niacin (nicotinic acid) has recently been shown to increase serum adiponectin concentrations in men with the metabolic syndrome. However, little is known about the mechanism(s) by which niacin regulates the intracellular trafficking and secretion of adiponectin. Since niacin appears to exert its effects on lipolysis through receptor (GPR109A)-dependent and -independent pathways, the purpose of this investigation was to examine the role of the recently identified GPR109A receptor in adiponectin secretion. Initial in vivo studies in rats demonstrated that niacin (30 mg/kg po) acutely increases serum adiponectin concentrations, whereas it decreases NEFAs. Further in vitro studies demonstrated an increase in adiponectin secretion and a decrease in lipolysis in primary adipocytes following treatment with niacin or β-hydroxybutyrate (an endogenous ligand of the GPR109A receptor), but these effects were blocked when adipocytes were pretreated with pertussis toxin. Niacin had no effect on adiponectin secretion or lipolysis in 3T3-L1 adipocytes, which have limited cell surface expression of the GPR109A receptor. To further substantiate these in vitro findings, wild-type and GPR109A receptor knockout mice were administered a single dose of niacin or placebo, and serum was obtained for the determination of adiponectin and NEFA concentrations. Serum adiponectin concentrations increased and serum NEFAs decreased in the wild-type mice within 10 min following niacin administration. However, niacin administration had no effect on adiponectin and NEFA concentrations in the GPR109A receptor knockout mice. These results demonstrate that the GPR109A receptor plays an important role in the dual regulation of adiponectin secretion and lipolysis.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Huilei Wang ◽  
James Chen ◽  
Sandeep Jandu ◽  
Sean Melucci ◽  
William Savage ◽  
...  

AbstractTissue transglutaminase (TG2), a multifunctional protein of the transglutaminase family, has putative transamidation-independent functions in aging-associated vascular stiffening and dysfunction. Developing preclinical models will be critical to fully understand the physiologic relevance of TG2’s transamidation-independent activity and to identify the specific function of TG2 for therapeutic targeting. Therefore, in this study, we harnessed CRISPR-Cas9 gene editing technology to introduce a mutation at cysteine 277 in the active site of the mouse Tgm2 gene. Heterozygous and homozygous Tgm2-C277S mice were phenotypically normal and were born at the expected Mendelian frequency. TG2 protein was ubiquitously expressed in the Tgm2-C277S mice at levels similar to those of wild-type (WT) mice. In the Tgm2-C277S mice, TG2 transglutaminase function was successfully obliterated, but the transamidation-independent functions ascribed to GTP, fibronectin, and integrin binding were preserved. In vitro, a remodeling stimulus led to the significant loss of vascular compliance in WT mice, but not in the Tgm2-C277S or TG2−/− mice. Vascular stiffness increased with age in WT mice, as measured by pulse-wave velocity and tensile testing. Tgm2-C277S mice were protected from age-associated vascular stiffening, and TG2 knockout yielded further protection. Together, these studies show that TG2 contributes significantly to overall vascular modulus and vasoreactivity independent of its transamidation function, but that transamidation activity is a significant cause of vascular matrix stiffening during aging. Finally, the Tgm2-C277S mice can be used for in vivo studies to explore the transamidation-independent roles of TG2 in physiology and pathophysiology.


1999 ◽  
Vol 181 (15) ◽  
pp. 4704-4707 ◽  
Author(s):  
Ann M. Stevens ◽  
Nobuyuki Fujita ◽  
Akira Ishihama ◽  
E. P. Greenberg

ABSTRACT LuxR is a ς70 RNA polymerase (RNAP)-dependent transcriptional activator that controls expression of the Vibrio fischeri lux operon in response to an acylhomoserine lactone-cell density signal. We have investigated whether the α-subunit C-terminal domain (αCTD) of RNAP is required for LuxR activity. A purified signal-independent, LuxR C-terminal domain-containing polypeptide (LuxRΔN) was used to study the activation of transcription from theluxI promoter in vitro. Initiation of luxoperon transcription was observed in the presence of LuxRΔN and wild-type RNAP but not in the presence of LuxRΔN and RNAPs with truncated αCTDs. We also studied the in vivo role of the RNAP αCTD in activation of lux transcription in Escherichia coli. This enabled a comparison of results obtained with full-length LuxR to those obtained with LuxRΔN. These in vivo studies indicated that both LuxR and LuxRΔN require the RNAP αCTD for activity. The results of DNase I protection studies showed that LuxRΔN-RNAP complexes can bind and protect the luxIpromoter, but with less efficacy when the αCTD is truncated in comparison to the wild type. Thus, both in vitro and in vivo experiments demonstrated that LuxR-dependent transcriptional activation of the lux operon involves the RNAP αCTD and suggest that αCTD-LuxR interactions may play a role in recruitment of RNAP to theluxI promoter.


Open Biology ◽  
2015 ◽  
Vol 5 (9) ◽  
pp. 150105 ◽  
Author(s):  
P. Patrizia Mangione ◽  
Stéphanie Deroo ◽  
Stephan Ellmerich ◽  
Vittorio Bellotti ◽  
Simon Kolstoe ◽  
...  

Wild-type and variant forms of transthyretin (TTR), a normal plasma protein, are amyloidogenic and can be deposited in the tissues as amyloid fibrils causing acquired and hereditary systemic TTR amyloidosis, a debilitating and usually fatal disease. Reduction in the abundance of amyloid fibril precursor proteins arrests amyloid deposition and halts disease progression in all forms of amyloidosis including TTR type. Our previous demonstration that circulating serum amyloid P component (SAP) is efficiently depleted by administration of a specific small molecule ligand compound, that non-covalently crosslinks pairs of SAP molecules, suggested that TTR may be also amenable to this approach. We first confirmed that chemically crosslinked human TTR is rapidly cleared from the circulation in mice. In order to crosslink pairs of TTR molecules, promote their accelerated clearance and thus therapeutically deplete plasma TTR, we prepared a range of bivalent specific ligands for the thyroxine binding sites of TTR. Non-covalently bound human TTR–ligand complexes were formed that were stable in vitro and in vivo , but they were not cleared from the plasma of mice in vivo more rapidly than native uncomplexed TTR. Therapeutic depletion of circulating TTR will require additional mechanisms.


1998 ◽  
Vol 18 (2) ◽  
pp. 1115-1124 ◽  
Author(s):  
Margaret A. Kenna ◽  
Carrie Baker Brachmann ◽  
Scott E. Devine ◽  
Jef D. Boeke

ABSTRACT Retrotransposon Ty1 faces a formidable cell barrier during transposition—the yeast nuclear membrane which remains intact throughout the cell cycle. We investigated the mechanism by which transposition intermediates are transported from the cytoplasm (the presumed site of Ty1 DNA synthesis) to the nucleus, where they are integrated into the genome. Ty1 integrase has a nuclear localization signal (NLS) at its C terminus. Both full-length integrase and a C-terminal fragment localize to the nucleus. C-terminal deletion mutants in Ty1 integrase were used to map the putative NLS to the last 74 amino acid residues of integrase. Mutations in basic segments within this region decreased retrotransposition at least 50-fold in vivo. Furthermore, these mutant integrase proteins failed to localize to the nucleus. Production of virus-like particles, reverse transcriptase activity, and complete in vitro Ty1 integration resembled wild-type levels, consistent with failure of the mutant integrases to enter the nucleus.


Blood ◽  
1998 ◽  
Vol 91 (2) ◽  
pp. 406-418 ◽  
Author(s):  
Tomasz Skorski ◽  
Malgorzata Nieborowska-Skorska ◽  
Pawel Wlodarski ◽  
Mariusz Wasik ◽  
Rossana Trotta ◽  
...  

To determine the possible role of the BCR/ABL oncoprotein SH3 domain in BCR/ABL-dependent leukemogenesis, we studied the biologic properties of a BCR/ABL SH3 deletion mutant (▵SH3 BCR/ABL) constitutively expressed in murine hematopoietic cells. ▵SH3 BCR/ABL was able to activate known BCR/ABL-dependent downstream effector molecules such as RAS, PI-3kinase, MAPK, JNK, MYC, JUN, STATs, and BCL-2. Moreover, expression of ▵SH3 BCR/ABL protected 32Dcl3 murine myeloid precursor cells from apoptosis, induced their growth factor-independent proliferation, and resulted in transformation of primary bone marrow cells in vitro. Unexpectedly, leukemic growth from cells expressing ▵SH3 BCR/ABL was significantly retarded in SCID mice compared with that of cells expressing the wild-type protein. In vitro and in vivo studies to determine the adhesive and invasive properties of ▵SH3 BCR/ABL-expressing cells showed their decreased interaction to collagen IV- and laminin-coated plates and their reduced capacity to invade the stroma and to seed the bone marrow and spleen. The decreased interaction with collagen type IV and laminin was consistent with a reduced expression of α2 integrin by ▵SH3 BCR/ABL-transfected 32Dcl3 cells. Moreover, as compared with wild-type BCR/ABL, which localizes primarily in the cytoskeletal/ membrane fraction, ▵SH3 BCR/ABL was more evenly distributed between the cytoskeleton/membrane and the cytosol compartments. Together, the data indicate that the SH3 domain of BCR/ABL is dispensable for in vitro transformation of hematopoietic cells but is essential for full leukemogenic potential in vivo.


2002 ◽  
Vol 1 (2) ◽  
pp. 153535002002021
Author(s):  
Mian M. Alauddin ◽  
Atranik Shahinian ◽  
Erlinda M. Gordon ◽  
Peter S. Conti

2′-Deoxy-2′-flouro-5-methyl-1-β-d-arabinofuranosyluracil (FMAU) has been evaluated in HT-29 cells as a potential positron emission tomography (PET) radiotracer for imaging HSV-tk gene expression in vivo. In vitro experiments demonstrate that the accumulation of [14C]-FMAU in HSV-tk-expressing cells is 2.4-fold ( p < .02), 4.0-fold ( p < .001), and 5.3-fold ( p < .001) higher than the wild-type cells at 1, 3, and 5 hr, respectively. In vivo studies revealed that the tumor uptake in HSV-tk-expressing cells was 2.3-fold ( p < .001), 3.0-fold ( p < .001), and 5.5-fold ( p < .001) higher than the control cells at 1, 2, and 5 hr, respectively. FMAU was found to be more sensitive compared to our earlier studies using 9-[(3-18F-fluoro-1-hydroxy-2-propoxy)methyl]-guanine ([18F]-FHPG) and 9-(4-[18F]-fluoro-3-hydroxy-methylbutyl)guanine ([18F]-FHBG) in the same cell lines, although, the specificity was less than FHBG. These results suggest that while FMAU labeled with PET isotopes may be useful for imaging HSV-tk-expressing tumors in vivo, multitracer studies across additional tumor models are necessary in order to identify an optimal PET radiotracer.


Sign in / Sign up

Export Citation Format

Share Document