scholarly journals The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis.

1995 ◽  
Vol 6 (2) ◽  
pp. 185-197 ◽  
Author(s):  
V Sudakin ◽  
D Ganoth ◽  
A Dahan ◽  
H Heller ◽  
J Hershko ◽  
...  

The ubiquitin-mediated degradation of mitotic cyclins is required for cells to exit from mitosis. Previous work with cell-free systems has revealed four components required for cyclin-ubiquitin ligation and proteolysis: a nonspecific ubiquitin-activating enzyme E1, a soluble fraction containing a ubiquitin carrier protein activity called E2-C, a crude particulate fraction containing a ubiquitin ligase (E3) activity that is activated during M-phase, and a constitutively active 26S proteasome that degrades ubiquitinated proteins. Here, we identify a novel approximately 1500-kDa complex, termed the cyclosome, which contains a cyclin-selective ubiquitin ligase activity, E3-C. E3-C is present but inactive during interphase; it can be activated in vitro by the addition of cdc2, enabling the transfer of ubiquitin from E2-C to cyclin. The kinetics of E3-C activation suggest the existence of one or more intermediates between cdc2 and E3-C. Cyclosome-associated E3-C acts on both cyclin A and B, and requires the presence of wild-type N-terminal destruction box motifs in each cyclin. Ubiquitinated cyclins are then rapidly recognized and degraded by the proteasome. These results identify the cyclosome-associated E3-C as the component of the cyclin destruction machinery whose activity is ultimately regulated by cdc2 and, as such, the element directly responsible for setting mitotic cyclin levels during early embryonic cell cycles.

2000 ◽  
Vol 11 (7) ◽  
pp. 2315-2325 ◽  
Author(s):  
Joel D. Leverson ◽  
Claudio A.P. Joazeiro ◽  
Andrew M. Page ◽  
Han-kuei Huang ◽  
Philip Hieter ◽  
...  

Polyubiquitination marks proteins for degradation by the 26S proteasome and is carried out by a cascade of enzymes that includes ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s), and ubiquitin ligases (E3s). The anaphase-promoting complex or cyclosome (APC/C) comprises a multisubunit ubiquitin ligase that mediates mitotic progression. Here, we provide evidence that theSaccharomyces cerevisiae RING-H2 finger protein Apc11 defines the minimal ubiquitin ligase activity of the APC. We found that the integrity of the Apc11p RING-H2 finger was essential for budding yeast cell viability, Using purified, recombinant proteins we showed that Apc11p interacted directly with the Ubc4 ubiquitin conjugating enzyme (E2). Furthermore, purified Apc11p was capable of mediating E1- and E2-dependent ubiquitination of protein substrates, including Clb2p, in vitro. The ability of Apc11p to act as an E3 was dependent on the integrity of the RING-H2 finger, but did not require the presence of the cullin-like APC subunit Apc2p. We suggest that Apc11p is responsible for recruiting E2s to the APC and for mediating the subsequent transfer of ubiquitin to APC substrates in vivo.


2004 ◽  
Vol 24 (14) ◽  
pp. 6467-6475 ◽  
Author(s):  
Laurent Le Cam ◽  
Matthieu Lacroix ◽  
Maria A. Ciemerych ◽  
Claude Sardet ◽  
Piotr Sicinski

ABSTRACT The ubiquitously expressed E4F protein was originally identified as an E1A-regulated cellular transcription factor required for adenovirus replication. The function of this protein in normal cell physiology remains largely unknown. To address this issue, we generated E4F knockout mice by gene targeting. Embryos lacking E4F die at the peri-implantation stage, while in vitro-cultured E4F−/− blastocysts exhibit defects in mitotic progression, chromosomal missegregation, and increased apoptosis. Consistent with these observations, we found that E4F localizes to the mitotic spindle during the M phase of early embryos. Our results establish a crucial role for E4F during early embryonic cell cycles and reveal an unexpected function for E4F in mitosis.


2019 ◽  
Author(s):  
Xiaofei Ma ◽  
Jan Inge Øvrebø ◽  
Eric M Thompson

AbstractThe active site of the essential, eukaryotic CDK1 kinase is generated by core structural elements, among which the PSTAIRE motif in the critical αC-helix, is universally conserved in metazoans. The CDK2 kinase, sharing the PSTAIRE, arose early in metazoan evolution and permitted subdivision of tasks along the S-M-phase axis. The marine chordate, Oikopleura dioica, is the only metazoan known to possess more than a single CDK1 ortholog, and all of its 5 paralogs show sequence divergences in the PSTAIRE. Through assessing CDK1 gene duplications in the appendicularian lineage, we show that the CDK1 activation loop substrate binding platform, ATP entrance site, hinge region, and main Cyclin binding interface, have all diversified under positive selection. Three of the 5 CDK1 paralogs are required for embryonic divisions and knockdown phenotypes illustrate further subdivision of functions along the S-M-phase axis. In parallel to CDK1 gene duplications, there has also been amplification in the Cyclin B complement. Among these, the CDK1d:Cyclin Ba pairing is required for oogenic meiosis and early embryogenesis and shows evidence of coevolution of an exclusive interaction. In an intriguing twist on the general rule that Cyclin B oscillations on a background of stable CDK1 levels regulate M-phase MPF activity, it is CDK1d protein levels that oscillate, rather than Cyclin Ba levels, to drive rapid, early embryonic cell cycles. Strikingly, the modified PSTAIRE of odCDK1d shows convergence over great evolutionary distance with plant CDKB, and in both O. dioica, and plants, these variants exhibit increased specialization to M-phase.


2002 ◽  
Vol 22 (6) ◽  
pp. 1947-1960 ◽  
Author(s):  
William J. Hansen ◽  
Michael Ohh ◽  
Javid Moslehi ◽  
Keiichi Kondo ◽  
William G. Kaelin ◽  
...  

ABSTRACT We examined the biogenesis of the von Hippel-Lindau (VHL) tumor suppressor protein (pVHL) in vitro and in vivo. pVHL formed a complex with the cytosolic chaperonin containing TCP-1 (CCT or TRiC) en route to assembly with elongin B/C and the subsequent formation of the VCB-Cul2 ubiquitin ligase. Blocking the interaction of pVHL with elongin B/C resulted in accumulation of pVHL within the CCT complex. pVHL present in purified VHL-CCT complexes, when added to rabbit reticulocyte lysate, proceeded to form VCB and VCB-Cul2. Thus, CCT likely functions, at least in part, by retaining VHL chains pending the availability of elongin B/C for final folding and/or assembly. Tumor-associated mutations within exon II of the VHL syndrome had diverse effects upon the stability and/or function of pVHL-containing complexes. First, a pVHL mutant lacking the entire region encoded by exon II did not bind to CCT and yet could still assemble into complexes with elongin B/C and elongin B/C-Cul2. Second, a number of tumor-derived missense mutations in exon II did not decrease CCT binding, and most had no detectable effect upon VCB-Cul2 assembly. Many exon II mutants, however, were found to be defective in the binding to and subsequent ubiquitination of hypoxia-inducible factor 1α (HIF-1α), a substrate of the VCB-Cul2 ubiquitin ligase. We conclude that the selection pressure to mutate VHL exon II during tumorigenesis does not relate to loss of CCT binding but may reflect quantitative or qualitative defects in HIF binding and/or in pVHL-dependent ubiquitin ligase activity.


2020 ◽  
Author(s):  
Yuki Shindo ◽  
Amanda A. Amodeo

AbstractThe early embryos of many species undergo a switch from rapid, reductive cleavage divisions to slower, cell fate-specific division patterns at the Mid-Blastula Transition (MBT). The maternally loaded histone pool is used to measure the increasing ratio of nuclei to cytoplasm (N/C ratio) to control MBT onset, but the molecular mechanism of how histones regulate the cell cycle has remained elusive. Here, we show that excess histone H3 inhibits the DNA damage checkpoint kinase Chk1 to promote cell cycle progression in the Drosophila embryo. We find that excess H3-tail that cannot be incorporated into chromatin is sufficient to shorten the embryonic cell cycle and reduce the activity of Chk1 in vitro and in vivo. Removal of the Chk1 phosphosite in H3 abolishes its ability to regulate the cell cycle. Mathematical modeling quantitatively supports a mechanism where changes in H3 nuclear concentrations over the final cell cycles leading up to the MBT regulate Chk1-dependent cell cycle slowing. We provide a novel mechanism for Chk1 regulation by H3, which is crucial for proper cell cycle remodeling during early embryogenesis.


1992 ◽  
Vol 3 (6) ◽  
pp. 687-698 ◽  
Author(s):  
D H Walker ◽  
A A DePaoli-Roach ◽  
J L Maller

Using cytostatic factor metaphase II-arrested extracts as a model system, we show that protein phosphatase 1 is regulated during early embryonic cell cycles in Xenopus. Phosphatase 1 activity peaks during interphase and decreases shortly before the onset of mitosis. A second peak of activity appears in mitosis at about the same time that cdc2 becomes active. If extracts are inhibited in S-phase with aphidicolin, then phosphatase 1 activity remains high. The activity of phosphatase 1 appears to determine the timing of exit from S-phase and entry into M-phase; inhibition of phosphatase 1 by the specific inhibitor, inhibitor 2 (Inh-2), causes premature entry into mitosis, whereas exogenously added phosphatase 1 lengthens the interphase period. Analysis of DNA synthesis in extracts treated with Inh-2, but lacking the A- and B-type cyclins, shows that phosphatase 1 is also required for the process of DNA replication. These data indicate that phosphatase 1 is a component of the signaling pathway that ensures that M-phase is not initiated until DNA synthesis is complete.


2000 ◽  
Vol 20 (21) ◽  
pp. 8185-8197 ◽  
Author(s):  
Manabu Furukawa ◽  
Yanping Zhang ◽  
Joseph McCarville ◽  
Tomohiko Ohta ◽  
Yue Xiong

ABSTRACT Members of the cullin and RING finger ROC protein families form heterodimeric complexes to constitute a potentially large number of distinct E3 ubiquitin ligases. We report here that the highly conserved C-terminal sequence in CUL1 is dually required, both for nuclear localization and for modification by NEDD8. Disruption of ROC1 binding impaired nuclear accumulation of CUL1 and decreased NEDD8 modification in vivo but had no effect on NEDD8 modification of CUL1 in vitro, suggesting that ROC1 promotes CUL1 nuclear accumulation to facilitate its NEDD8 modification. Disruption of NEDD8 binding had no effect on ROC1 binding, nor did it affect nuclear localization of CUL1, suggesting that nuclear localization and NEDD8 modification of CUL1 are two separable steps, with nuclear import preceding and required for NEDD8 modification. Disrupting NEDD8 modification diminishes the IκBα ubiquitin ligase activity of CUL1. These results identify a pathway for regulation of CUL1 activity—ROC1 and the CUL1 C-terminal sequence collaboratively mediate nuclear accumulation and NEDD8 modification, facilitating assembly of active CUL1 ubiquitin ligase. This pathway may be commonly utilized for the assembly of other cullin ligases.


2003 ◽  
Vol 14 (10) ◽  
pp. 4003-4014 ◽  
Author(s):  
James R. A. Hutchins ◽  
Dina Dikovskaya ◽  
Paul R. Clarke

Activation of Cdc2/cyclin B kinase and entry into mitosis requires dephosphorylation of inhibitory sites on Cdc2 by Cdc25 phosphatase. In vertebrates, Cdc25C is inhibited by phosphorylation at a single site targeted by the checkpoint kinases Chk1 and Cds1/Chk2 in response to DNA damage or replication arrest. In Xenopus early embryos, the inhibitory site on Cdc25C (S287) is also phosphorylated by a distinct protein kinase that may determine the intrinsic timing of the cell cycle. We show that S287-kinase activity is repressed in extracts of unfertilized Xenopus eggs arrested in M phase but is rapidly stimulated upon release into interphase by addition of Ca2+, which mimics fertilization. S287-kinase activity is not dependent on cyclin B degradation or inactivation of Cdc2/cyclin B kinase, indicating a direct mechanism of activation by Ca2+. Indeed, inhibitor studies identify the predominant S287-kinase as Ca2+/calmodulin-dependent protein kinase II (CaMKII). CaMKII phosphorylates Cdc25C efficiently on S287 in vitro and, like Chk1, is inhibited by 7-hydroxystaurosporine (UCN-01) and debromohymenialdisine, compounds that abrogate G2 arrest in somatic cells. CaMKII delays Cdc2/cyclin B activation via phosphorylation of Cdc25C at S287 in egg extracts, indicating that this pathway regulates the timing of mitosis during the early embryonic cell cycle.


2008 ◽  
Vol 19 (8) ◽  
pp. 3323-3333 ◽  
Author(s):  
Olivier Santt ◽  
Thorsten Pfirrmann ◽  
Bernhard Braun ◽  
Jeannette Juretschke ◽  
Philipp Kimmig ◽  
...  

Glucose-dependent regulation of carbon metabolism is a subject of intensive studies. We have previously shown that the switch from gluconeogenesis to glycolysis is associated with ubiquitin-proteasome linked elimination of the key enzyme fructose-1,6-bisphosphatase. Seven glucose induced degradation deficient (Gid)-proteins found previously in a genomic screen were shown to form a complex that binds FBPase. One of the subunits, Gid2/Rmd5, contains a degenerated RING finger domain. In an in vitro assay, heterologous expression of GST-Gid2 leads to polyubiquitination of proteins. In addition, we show that a mutation in the degenerated RING domain of Gid2/Rmd5 abolishes fructose-1,6-bisphosphatase polyubiquitination and elimination in vivo. Six Gid proteins are present in gluconeogenic cells. A seventh protein, Gid4/Vid24, occurs upon glucose addition to gluconeogenic cells and is afterwards eliminated. Forcing abnormal expression of Gid4/Vid24 in gluconeogenic cells leads to fructose-1,6-bisphosphatase degradation. This suggests that Gid4/Vid24 initiates fructose-1,6-bisphosphatase polyubiquitination by the Gid complex and its subsequent elimination by the proteasome. We also show that an additional gluconeogenic enzyme, phosphoenolpyruvate carboxykinase, is subject to Gid complex-dependent degradation. Our study uncovers a new type of ubiquitin ligase complex composed of novel subunits involved in carbohydrate metabolism and identifies Gid4/Vid24 as a major regulator of this E3.


Sign in / Sign up

Export Citation Format

Share Document