scholarly journals The Drosophila snr1 and brm proteins are related to yeast SWI/SNF proteins and are components of a large protein complex.

1995 ◽  
Vol 6 (7) ◽  
pp. 777-791 ◽  
Author(s):  
A K Dingwall ◽  
S J Beek ◽  
C M McCallum ◽  
J W Tamkun ◽  
G V Kalpana ◽  
...  

During most of Drosophila development the regulation of homeotic gene transcription is controlled by two groups of regulatory genes, the trithorax group of activators and the Polycomb group of repressors. brahma (brm), a member of the trithorax group, encodes a protein related to the yeast SWI2/SNF2 protein, a subunit of a protein complex that assists sequence-specific activator proteins by alleviating the repressive effects of chromatin. To learn more about the molecular mechanisms underlying the regulation of homeotic gene transcription, we have investigated whether a similar complex exists in flies. We identified the Drosophila snr1 gene, a potential homologue of the yeast SNF5 gene that encodes a subunit of the yeast SWI/SNF complex. The snr1 gene is essential and genetically interacts with brm and trithorax (trx), suggesting cooperation in regulating homeotic gene transcription. The spatial and temporal patterns of expression of snr1 are similar to those of brm. The snr1 and brm proteins are present in a large (> 2 x 10(6) Da) complex, and they co-immunoprecipitate from Drosophila extracts. These findings provide direct evidence for conservation of the SWI/SNF complex in higher eucaryotes and suggest that the Drosophila brm/snr1 complex plays an important role in maintaining homeotic gene transcription during development by counteracting the repressive effects of chromatin.

Development ◽  
2001 ◽  
Vol 128 (8) ◽  
pp. 1429-1441 ◽  
Author(s):  
M.L. Ruhf ◽  
A. Braun ◽  
O. Papoulas ◽  
J.W. Tamkun ◽  
N. Randsholt ◽  
...  

The Drosophila domino gene has been isolated in a screen for mutations that cause hematopoietic disorders. Generation and analysis of loss-of-function domino alleles show that the phenotypes are typical for proliferation gene mutations. Clonal analysis demonstrates that domino is necessary for cell viability and proliferation, as well as for oogenesis. domino encodes two protein isoforms of 3202 and 2498 amino acids, which contain a common N-terminal region but divergent C termini. The common region includes a 500 amino acid DNA-dependent ATPase domain of the SWI2/SNF2 family of proteins, which function via interaction with chromatin. We show that, although domino alleles do not exhibit homeotic phenotypes by themselves, domino mutations enhance Polycomb group mutations and counteract Trithorax group effects. The Domino proteins are present in large complexes in embryo extracts, and one isoform binds to a number of discrete sites on larval polytene chromosomes. Altogether, the data lead us to propose that domino acts as a repressor by interfering with chromatin structure. This activity is likely to be performed as a subunit of a chromatin-remodeling complex.


Genetics ◽  
1999 ◽  
Vol 152 (3) ◽  
pp. 1045-1055
Author(s):  
Izanne D Zorin ◽  
Tatiana I Gerasimova ◽  
Victor G Corces

Abstract Mutations in the lawc gene result in a pleiotropic phenotype that includes homeotic transformation of the arista into leg. lawc mutations enhance the phenotype of trx-G mutations and suppress the phenotype of Pc mutations. Mutations in lawc affect homeotic gene transcription, causing ectopic expression of Antennapedia in the eye-antenna imaginal disc. These results suggest that lawc is a new member of the trithorax family. The lawc gene behaves as an enhancer of position-effect variegation and interacts genetically with mod(mdg4), which is a component of the gypsy insulator. In addition, mutations in the lawc gene cause alterations in the punctated distribution of mod(mdg4) protein within the nucleus. These results suggest that the lawc protein is involved in regulating the higher-order organization of chromatin.


2021 ◽  
Vol 12 ◽  
Author(s):  
Diego Ornelas-Ayala ◽  
Adriana Garay-Arroyo ◽  
Berenice García-Ponce ◽  
Elena R. Álvarez-Buylla ◽  
María de la Paz Sanchez

ULTRAPETALA1 (ULT1) is a versatile plant-exclusive protein, initially described as a trithorax group (TrxG) factor that regulates transcriptional activation and counteracts polycomb group (PcG) repressor function. As part of TrxG, ULT1 interacts with ARABIDOPSIS TRITHORAX1 (ATX1) to regulate H3K4me3 activation mark deposition. However, our recent studies indicate that ULT1 can also act independently of ATX1. Moreover, the ULT1 ability to interact with transcription factors (TFs) and PcG proteins indicates that it is a versatile protein with other roles. Therefore, in this work we revised recent information about the function of Arabidopsis ULT1 to understand the roles of ULT1 in plant development. Furthermore, we discuss the molecular mechanisms of ULT1, highlighting its epigenetic role, in which ULT1 seems to have characteristics of an epigenetic molecular switch that regulates repression and activation processes via TrxG and PcG complexes.


Genetics ◽  
1995 ◽  
Vol 139 (2) ◽  
pp. 797-814 ◽  
Author(s):  
J G Gindhart ◽  
T C Kaufman

Abstract The Drosophila homeotic gene Sex combs reduced (Scr) is necessary for the establishment and maintenance of the morphological identity of the labial and prothoracic segments. In the early embryo, its expression pattern is established through the activity of several gap and segmentation gene products, as well as other transcription factors. Once established, the Polycomb group (Pc-G) and trithorax group (trx-G) gene products maintain the spatial pattern of Scr expression for the remainder of development. We report the identification of DNA fragments in the Scr regulatory region that may be important for its regulation by Polycomb and trithorax group gene products. When DNA fragments containing these regulatory sequences are subcloned into P-element vectors containing a white minigene, transformants containing these constructs exhibit mosaic patterns of pigmentation in the adult eye, indicating that white minigene expression is repressed in a clonally heritable manner. The size of pigmented and nonpigmented clones in the adult eye suggests that the event determining whether a cell in the eye anlagen will express white occurs at least as early as the first larval instar. The amount of white minigene repression is reduced in some Polycomb group mutants, whereas repression is enhanced in flies mutant for a subset of trithorax group loci. The repressor activity of one fragment, normally located in Scr Intron 2, is increased when it is able to homologously pair, a property consistent with genetic data suggesting that Scr exhibits transvection. Another Scr regulatory fragment, normally located 40 kb upstream of the Scr promoter, silences ectopic expression of an Scr-lacZ fusion gene in the embryo and does so in a Polycomb-dependent manner. We propose that the regulatory sequences located within these DNA fragments may normally mediate the regulation of Scr by proteins encoded by members of the Polycomb and trithorax group loci.


1999 ◽  
Vol 19 (9) ◽  
pp. 6441-6447 ◽  
Author(s):  
Tanya Rozovskaia ◽  
Sergei Tillib ◽  
Sheryl Smith ◽  
Yurii Sedkov ◽  
Orit Rozenblatt-Rosen ◽  
...  

ABSTRACT Trithorax (TRX) and ASH1 belong to the trithorax group (trxG) of transcriptional activator proteins, which maintains homeotic gene expression during Drosophila development. TRX and ASH1 are localized on chromosomes and share several homologous domains with other chromatin-associated proteins, including a highly conserved SET domain and PHD fingers. Based on genetic interactions betweentrx and ash1 and our previous observation that association of the TRX protein with polytene chromosomes isash1 dependent, we investigated the possibility of a physical linkage between the two proteins. We found that the endogenous TRX and ASH1 proteins coimmunoprecipitate from embryonic extracts and colocalize on salivary gland polytene chromosomes. Furthermore, we demonstrated that TRX and ASH1 bind in vivo to a relatively small (4 kb) bxd subregion of the homeotic geneUltrabithorax (Ubx), which contains severaltrx response elements. Analysis of the effects ofash1 mutations on the activity of this regulatory region indicates that it also contains ash1 response element(s). This suggests that ASH1 and TRX act on Ubx in relatively close proximity to each other. Finally, TRX and ASH1 appear to interact directly through their conserved SET domains, based on binding assays in vitro and in yeast and on coimmunoprecipitation assays with embryo extracts. Collectively, these results suggest that TRX and ASH1 are components that interact either within trxG protein complexes or between complexes that act in close proximity on regulatory DNA to maintain Ubx transcription.


2015 ◽  
Vol 1 (11) ◽  
pp. e1500737 ◽  
Author(s):  
Sergi Aranda ◽  
Gloria Mas ◽  
Luciano Di Croce

The Polycomb group (PcG) of proteins defines a subset of factors that physically associate and function to maintain the positional identity of cells from the embryo to adult stages. PcG has long been considered a paradigmatic model for epigenetic maintenance of gene transcription programs. Despite intensive research efforts to unveil the molecular mechanisms of action of PcG proteins, several fundamental questions remain unresolved: How many different PcG complexes exist in mammalian cells? How are PcG complexes targeted to specific loci? How does PcG regulate transcription? In this review, we discuss the diversity of PcG complexes in mammalian cells, examine newly identified modes of recruitment to chromatin, and highlight the latest insights into the molecular mechanisms underlying the function of PcGs in transcription regulation and three-dimensional chromatin conformation.


2020 ◽  
Vol 48 (4) ◽  
pp. 1697-1706
Author(s):  
Huijun Jiao ◽  
Yuanyuan Xie ◽  
Zicong Li

Polycomb group (PcG) proteins are highly conserved chromatin-modifying complexes that implement gene silencing in higher eukaryotes. Thousands of genes and multiple developmental processes are regulated by PcG proteins. As the first chromatin modifier been identified in model plant Arabidopsis thaliana, the methyltransferase CURLY LEAF (CLF) and its catalyzed histone H3 Lysine 27 trimethylation (H3K27me3) have already become well-established paradigm in plant epigenetic study. Like in animals, PcG proteins mediate plant development and repress homeotic gene expression by antagonizing with trithorax group proteins. Recent researches have advanced our understanding on plant PcG proteins, including the plant-specific components of these well-conserved protein complexes, the close association with transcription factors and noncoding RNA for the spatial and temporal specificity, the dynamic regulation of the repressive mark H3K27me3 and the PcG-mediated chromatin conformation alterations in gene expression. In this review, we will summarize the molecular mechanisms of PcG-implemented gene repression and the relationship between H3K27me3 and another repressive mark histone H2A Lysine 121 mono-ubiquitination (H2A121ub) will also be discussed.


Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 257-275 ◽  
Author(s):  
Sophie Netter ◽  
Marie-Odile Fauvarque ◽  
Ruth Diez del Corral ◽  
Jean-Maurice Dura ◽  
Dario Coen

AbstractWe used the white gene as an enhancer trap and reporter of chromatin structure. We collected white+ transgene insertions presenting a peculiar pigmentation pattern in the eye: white expression is restricted to the dorsal half of the eye, with a clear-cut dorsal/ventral (D/V) border. This D/V pattern is stable and heritable, indicating that phenotypic expression of the white reporter reflects positional information in the developing eye. Localization of these transgenes led us to identify a unique genomic region encompassing 140 kb in 69D1–3 subject to this D/V effect. This region contains at least three closely related homeobox-containing genes that are constituents of the iroquois complex (IRO-C). IRO-C genes are coordinately regulated and implicated in similar developmental processes. Expression of these genes in the eye is regulated by the products of the Polycomb -group (Pc-G) and trithorax-group (trx-G) genes but is not modified by classical modifiers of position-effect variegation. Our results, together with the report of a Pc -G binding site in 69D, suggest that we have identified a novel cluster of target genes for the Pc-G and trx-G products. We thus propose that ventral silencing of the whole IRO-C in the eye occurs at the level of chromatin structure in a manner similar to that of the homeotic gene complexes, perhaps by local compaction of the region into a heterochromatin-like structure involving the Pc-G products.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 136
Author(s):  
Baolong Liu ◽  
Jiujiu Yu

The nucleotide-binding domain and leucine-rich repeat related (NLR) family, pyrin domain containing 3 (NLRP3) inflammasome is a multimeric protein complex that recognizes various danger or stress signals from pathogens, the host, and the environment, leading to activation of caspase-1 and inducing inflammatory responses. This pro-inflammatory protein complex plays critical roles in pathogenesis of a wide range of diseases including neurodegenerative diseases, autoinflammatory diseases, and metabolic disorders. Therefore, intensive efforts have been devoted to understanding its activation mechanisms and to searching for its specific inhibitors. Approximately forty natural compounds with anti-NLRP3 inflammasome properties have been identified. Here, we provide an update about new natural compounds that have been identified within the last three years to inhibit the NLRP3 inflammasome and offer an overview of the underlying molecular mechanisms of their anti-NLRP3 inflammasome activities.


Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 733-746
Author(s):  
Jeffrey W Southworth ◽  
James A Kennison

Abstract The Sex combs reduced (Scr) gene specifies the identities of the labial and first thoracic segments in Drosophila melanogaster. In imaginal cells, some Scr mutations allow cis-regulatory elements on one chromosome to stimulate expression of the promoter on the homolog, a phenomenon that was named transvection by Ed Lewis in 1954. Transvection at the Scr gene is blocked by rearrangements that disrupt pairing, but is zeste independent. Silencing of the Scr gene in the second and third thoracic segments, which requires the Polycomb group proteins, is disrupted by most chromosomal aberrations within the Scr gene. Some chromosomal aberrations completely derepress Scr even in the presence of normal levels of all Polycomb group proteins. On the basis of the pattern of chromosomal aberrations that disrupt Scr gene silencing, we propose a model in which two cis-regulatory elements interact to stabilize silencing of any promoter or cis-regulatory element physically between them. This model also explains the anomalous behavior of the Scx allele of the flanking homeotic gene, Antennapedia. This allele, which is associated with an insertion near the Antennapedia P1 promoter, inactivates the Antennapedia P1 and P2 promoters in cis and derepresses the Scr promoters both in cis and on the homologous chromosome.


Sign in / Sign up

Export Citation Format

Share Document