scholarly journals Anti-NLRP3 Inflammasome Natural Compounds: An Update

Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 136
Author(s):  
Baolong Liu ◽  
Jiujiu Yu

The nucleotide-binding domain and leucine-rich repeat related (NLR) family, pyrin domain containing 3 (NLRP3) inflammasome is a multimeric protein complex that recognizes various danger or stress signals from pathogens, the host, and the environment, leading to activation of caspase-1 and inducing inflammatory responses. This pro-inflammatory protein complex plays critical roles in pathogenesis of a wide range of diseases including neurodegenerative diseases, autoinflammatory diseases, and metabolic disorders. Therefore, intensive efforts have been devoted to understanding its activation mechanisms and to searching for its specific inhibitors. Approximately forty natural compounds with anti-NLRP3 inflammasome properties have been identified. Here, we provide an update about new natural compounds that have been identified within the last three years to inhibit the NLRP3 inflammasome and offer an overview of the underlying molecular mechanisms of their anti-NLRP3 inflammasome activities.

2019 ◽  
Vol 8 (10) ◽  
pp. 1615 ◽  
Author(s):  
Efthymia Theofani ◽  
Maria Semitekolou ◽  
Ioannis Morianos ◽  
Konstantinos Samitas ◽  
Georgina Xanthou

Severe asthma (SA) is a chronic lung disease characterized by recurring symptoms of reversible airflow obstruction, airway hyper-responsiveness (AHR), and inflammation that is resistant to currently employed treatments. The nucleotide-binding oligomerization domain-like Receptor Family Pyrin Domain Containing 3 (NLRP3) inflammasome is an intracellular sensor that detects microbial motifs and endogenous danger signals and represents a key component of innate immune responses in the airways. Assembly of the NLRP3 inflammasome leads to caspase 1-dependent release of the pro-inflammatory cytokines IL-1β and IL-18 as well as pyroptosis. Accumulating evidence proposes that NLRP3 activation is critically involved in asthma pathogenesis. In fact, although NLRP3 facilitates the clearance of pathogens in the airways, persistent NLRP3 activation by inhaled irritants and/or innocuous environmental allergens can lead to overt pulmonary inflammation and exacerbation of asthma manifestations. Notably, administration of NLRP3 inhibitors in asthma models restrains AHR and pulmonary inflammation. Here, we provide an overview of the pathophysiology of SA, present molecular mechanisms underlying aberrant inflammatory responses in the airways, summarize recent studies pertinent to the biology and functions of NLRP3, and discuss the role of NLRP3 in the pathogenesis of asthma. Finally, we contemplate the potential of targeting NLRP3 as a novel therapeutic approach for the management of SA.


2021 ◽  
pp. 1-22
Author(s):  
Mariana Van Zeller ◽  
Diogo M. Dias ◽  
Ana M. Sebastião ◽  
Cláudia A. Valente

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease commonly diagnosed among the elderly population. AD is characterized by the loss of synaptic connections, neuronal death, and progressive cognitive impairment, attributed to the extracellular accumulation of senile plaques, composed by insoluble aggregates of amyloid-β (Aβ) peptides, and to the intraneuronal formation of neurofibrillary tangles shaped by hyperphosphorylated filaments of the microtubule-associated protein tau. However, evidence showed that chronic inflammatory responses, with long-lasting exacerbated release of proinflammatory cytokines by reactive glial cells, contribute to the pathophysiology of the disease. NLRP3 inflammasome (NLRP3), a cytosolic multiprotein complex sensor of a wide range of stimuli, was implicated in multiple neurological diseases, including AD. Herein, we review the most recent findings regarding the involvement of NLRP3 in the pathogenesis of AD. We address the mechanisms of NLRP3 priming and activation in glial cells by Aβ species and the potential role of neurofibrillary tangles and extracellular vesicles in disease progression. Neuronal death by NLRP3-mediated pyroptosis, driven by the interneuronal tau propagation, is also discussed. We present considerable evidence to claim that NLRP3 inhibition, is undoubtfully a potential therapeutic strategy for AD.


2020 ◽  
Vol 11 (9) ◽  
Author(s):  
Baochen Bai ◽  
Yanyan Yang ◽  
Qi Wang ◽  
Min Li ◽  
Chao Tian ◽  
...  

Abstract Inflammasomes are a class of cytosolic protein complexes. They act as cytosolic innate immune signal receptors to sense pathogens and initiate inflammatory responses under physiological and pathological conditions. The NLR-family pyrin domain-containing protein 3 (NLRP3) inflammasome is the most characteristic multimeric protein complex. Its activation triggers the cleavage of pro-interleukin (IL)-1β and pro-IL-18, which are mediated by caspase-1, and secretes mature forms of these mediators from cells to promote the further inflammatory process and oxidative stress. Simultaneously, cells undergo pro-inflammatory programmed cell death, termed pyroptosis. The danger signals for activating NLRP3 inflammasome are very extensive, especially reactive oxygen species (ROS), which act as an intermediate trigger to activate NLRP3 inflammasome, exacerbating subsequent inflammatory cascades and cell damage. Vascular endothelium at the site of inflammation is actively involved in the regulation of inflammation progression with important implications for cardiovascular homeostasis as a dynamically adaptable interface. Endothelial dysfunction is a hallmark and predictor for cardiovascular ailments or adverse cardiovascular events, such as coronary artery disease, diabetes mellitus, hypertension, and hypercholesterolemia. The loss of proper endothelial function may lead to tissue swelling, chronic inflammation, and the formation of thrombi. As such, elimination of endothelial cell inflammation or activation is of clinical relevance. In this review, we provided a comprehensive perspective on the pivotal role of NLRP3 inflammasome activation in aggravating oxidative stress and endothelial dysfunction and the possible underlying mechanisms. Furthermore, we highlighted the contribution of noncoding RNAs to NLRP3 inflammasome activation-associated endothelial dysfunction, and outlined potential clinical drugs targeting NLRP3 inflammasome involved in endothelial dysfunction. Collectively, this summary provides recent developments and perspectives on how NLRP3 inflammasome interferes with endothelial dysfunction and the potential research value of NLRP3 inflammasome as a potential mediator of endothelial dysfunction.


2016 ◽  
Vol 311 (1) ◽  
pp. C83-C100 ◽  
Author(s):  
Michael A. Katsnelson ◽  
Kristen M. Lozada-Soto ◽  
Hana M. Russo ◽  
Barbara A. Miller ◽  
George R. Dubyak

Nucleotide-binding domain, leucine-rich-repeat-containing family, pyrin domain-containing 3 (NLRP3) is a cytosolic protein that nucleates assembly of inflammasome signaling platforms, which facilitate caspase-1-mediated IL-1β release and other inflammatory responses in myeloid leukocytes. NLRP3 inflammasomes are assembled in response to multiple pathogen- or environmental stress-induced changes in basic cell physiology, including the destabilization of lysosome integrity and activation of K+-permeable channels/transporters in the plasma membrane (PM). However, the quantitative relationships between lysosome membrane permeabilization (LMP), induction of increased PM K+ permeability, and activation of NLRP3 signaling are incompletely characterized. We used Leu-Leu- O-methyl ester (LLME), a soluble lysosomotropic agent, to quantitatively track the kinetics and extent of LMP in relation to NLRP3 inflammasome signaling responses (ASC oligomerization, caspase-1 activation, IL-1β release) and PM cation fluxes in murine bone marrow-derived dendritic cells (BMDCs). Treatment of BMDCs with submillimolar (≤1 mM) LLME induced slower and partial increases in LMP that correlated with robust NLRP3 inflammasome activation and K+ efflux. In contrast, supramillimolar (≥2 mM) LLME elicited extremely rapid and complete collapse of lysosome integrity that was correlated with suppression of inflammasome signaling. Supramillimolar LLME also induced dominant negative effects on inflammasome activation by the canonical NLRP3 agonist nigericin; this inhibition correlated with an increase in NLRP3 ubiquitination. LMP elicited rapid BMDC death by both inflammasome-dependent pyroptosis and inflammasome-independent necrosis. LMP also triggered Ca2+ influx, which attenuated LLME-stimulated NLRP3 inflammasome signaling but potentiated LLME-induced necrosis. Taken together, these studies reveal a previously unappreciated signaling network that defines the coupling between LMP, changes in PM cation fluxes, cell death, and NLRP3 inflammasome activation.


2018 ◽  
Author(s):  
Kristiina Rajamäki ◽  
Salla Keskitalo ◽  
Mikko Seppänen ◽  
Outi Kuismin ◽  
Paula Vähäsalo ◽  
...  

ABSTRACTObjectivesTNFAIP3 encodes A20 that negatively regulates nuclear factor kappa light chain enhancer of activated B cells (NF-κB), the major transcription factor coordinating inflammatory gene expression. TNFAIP3 polymorphisms have been linked with a spectrum of inflammatory and autoimmune diseases and recently, loss-of-function mutations in A20 were found to cause a novel inflammatory disease ‘haploinsufficiency of A20’ (HA20). Here we describe a family with HA20 caused by a novel TNFAIP3 loss-of-function mutation and elucidate the upstream molecular mechanisms linking HA20 to dysregulation of NF-κB and the related inflammasome pathway.MethodsNF-κB activation was studied in a mutation-expressing cell line using luciferase reporter assay. Physical and close-proximity protein-protein interactions of wild-type and TNFAIP3 p.(Lys91*) mutant A20 were analyzed using mass spectrometry. NF-κB –dependent transcription, cytokine secretion, and inflammasome activation were compared in immune cells of the HA20 patients and control subjects.ResultsThe protein-protein interactome of p.(Lys91*) mutant A20 was severely impaired, including inter-actions with proteins regulating NF-κB activation, DNA repair responses, and the NLR family pyrin domain containing 3 (NLRP3) inflammasome. The p.(Lys91*) mutant A20 failed to suppress NF-κB signaling, which led to increased NF-κB –dependent proinflammatory cytokine transcription. Functional experiments in the HA20 patients’ immune cells uncovered a novel caspase-8-dependent mechanism of NLRP3 inflammasome hyperresponsiveness that mediated the excessive secretion of interleukin-1β and -18.ConclusionsThe current findings significantly deepen our understanding of the molecular mechanisms underlying HA20 and other diseases associated with reduced A20 expression or function, paving the way for future therapeutic targeting of the pathway.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 22
Author(s):  
Sk Mohiuddin Choudhury ◽  
Xusheng Ma ◽  
Yuanyuan Li ◽  
Xiaofeng Nian ◽  
Zhikuan Luo ◽  
...  

Foot-and-mouth disease virus (FMDV) infection causes inflammatory clinical symptoms, such as high fever and vesicular lesions, even death of animals. Interleukin-1β (IL-1β) is an inflammatory cytokine that plays an essential role in inflammatory responses against viral infection. The viruses have developed multiple strategies to induce the inflammatory responses, including regulation of IL-1β production. However, the molecular mechanism underlying the induction of IL-1β by FMDV remains not fully understood. Here, we found that FMDV robustly induced IL-1β production in macrophages and pigs. Infection of Casp-1 inhibitor-treated cells and NOD-, LRR- and pyrin domain-containing 3 (NLRP3)-knockdown cells indicated that NLRP3 is essential for FMDV-induced IL-1β secretion. More importantly, we found that FMDV Lpro associates with the NACHT and LRR domains of NLRP3 to promote NLRP3 inflammasome assembly and IL-1β secretion. Moreover, FMDV Lpro induces calcium influx and potassium efflux, which trigger NLRP3 activation. Our data revealed the mechanism underlying the activation of the NLRP3 inflammasome after FMDV Lpro expression, thus providing insights for the control of FMDV infection-induced inflammation.


2019 ◽  
Vol 116 (27) ◽  
pp. 13533-13542 ◽  
Author(s):  
Tomoyuki Miyauchi ◽  
Yoichiro Uchida ◽  
Kentaro Kadono ◽  
Hirofumi Hirao ◽  
Junya Kawasoe ◽  
...  

Liver ischemia and reperfusion injury (IRI) is a major challenge in liver surgery. Diet restriction reduces liver damage by increasing stress resistance; however, the underlying molecular mechanisms remain unclear. We investigated the preventive effect of 12-h fasting on mouse liver IRI. Partial warm hepatic IRI model in wild-type male C57BL/6 mice was used. The control ischemia and reperfusion (IR) group of mice was given food and water ad libitum, while the fasting IR group was given water but not food for 12 h before ischemic insult. In 12-h fasting mice, serum liver-derived enzyme level and tissue damages due to IR were strongly suppressed. Serum β-hydroxybutyric acid (BHB) was significantly raised before ischemia and during reperfusion. Up-regulated BHB induced an increment in the expression of FOXO1 transcription factor by raising the level of acetylated histone. Antioxidative enzyme heme oxigenase 1 (HO-1), a target gene of FOXO1, then increased. Autophagy activity was also enhanced. Serum high-mobility group box 1 was remarkably lowered by the 12-h fasting, and activation of NF-κB and NLRP3 inflammasome was suppressed. Consequently, inflammatory cytokine production and liver injury were reduced. Exogenous BHB administration or histone deacetylase inhibitor administration into the control fed mice ameliorated liver IRI, while FOXO1 inhibitor administration to the 12-h fasting group exacerbated liver IRI. The 12-h fasting exerted beneficial effects on the prevention of liver IRI by increasing BHB, thus up-regulating FOXO1 and HO-1, and by reducing the inflammatory responses and apoptotic cell death via the down-regulation of NF-κB and NLRP3 inflammasome.


RMD Open ◽  
2018 ◽  
Vol 4 (2) ◽  
pp. e000740 ◽  
Author(s):  
Kristiina Rajamäki ◽  
Salla Keskitalo ◽  
Mikko Seppänen ◽  
Outi Kuismin ◽  
Paula Vähäsalo ◽  
...  

ObjectivesTNFAIP3 encodes A20 that negatively regulates nuclear factor kappa light chain enhancer of activated B cells (NF-κB), the major transcription factor coordinating inflammatory gene expression. TNFAIP3 polymorphisms have been linked with a spectrum of inflammatory and autoimmune diseases and, recently, loss-of-function mutations in A20 were found to cause a novel inflammatory disease ‘haploinsufficiency of A20’ (HA20). Here we describe a family with HA20 caused by a novel TNFAIP3 loss-of-function mutation and elucidate the upstream molecular mechanisms linking HA20 to dysregulation of NF-κB and the related inflammasome pathway.MethodsNF-κB activation was studied in a mutation-expressing cell line using luciferase reporter assay. Physical and close-proximity protein–protein interactions of wild-type and TNFAIP3 p.(Lys91*) mutant A20 were analysed using mass spectrometry. NF-κB -dependent transcription, cytokine secretion and inflammasome activation were compared in immune cells of the HA20 patients and control subjects.ResultsThe protein–protein interactome of p.(Lys91*) mutant A20 was severely impaired, including interactions with proteins regulating NF-κB activation, DNA repair responses and the NLR family pyrin domain containing 3 (NLRP3) inflammasome. The p.(Lys91*) mutant A20 failed to suppress NF-κB signalling, which led to increased NF-κB -dependent proinflammatory cytokine transcription. Functional experiments in the HA20 patients’ immune cells uncovered a novel caspase-8-dependent mechanism of NLRP3 inflammasome hyperresponsiveness that mediated the excessive secretion of interleukin-1β and interleukin-18.ConclusionsThe current findings significantly deepen our understanding of the molecular mechanisms underlying HA20 and other diseases associated with reduced A20 expression or function, paving the way for future therapeutic targeting of the pathway.


2019 ◽  
Vol 20 (12) ◽  
pp. 2876 ◽  
Author(s):  
Carolina Pellegrini ◽  
Matteo Fornai ◽  
Luca Antonioli ◽  
Corrado Blandizzi ◽  
Vincenzo Calderone

Several lines of evidence point out the relevance of nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome as a pivotal player in the pathophysiology of several neurological and psychiatric diseases (i.e., Parkinson’s disease (PD), Alzheimer’s disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis, and major depressive disorder), metabolic disorders (i.e., obesity and type 2 diabetes) and chronic inflammatory diseases (i.e., intestinal inflammation, arthritis, and gout). Intensive research efforts are being made to achieve an integrated view about the pathophysiological role of NLRP3 inflammasome pathways in such disorders. Evidence is also emerging that the pharmacological modulation of NLRP3 inflammasome by phytochemicals could represent a promising molecular target for the therapeutic management of neurological, psychiatric, metabolic, and inflammatory diseases. The present review article has been intended to provide an integrated and critical overview of the available clinical and experimental evidence about the role of NLRP3 inflammasome in the pathophysiology of neurological, psychiatric, metabolic, and inflammatory diseases, including PD, AD, MS, depression, obesity, type 2 diabetes, arthritis, and intestinal inflammation. Special attention has been paid to highlight and critically discuss current scientific evidence on the effects of phytochemicals on NLRP3 inflammasome pathways and their potential in counteracting central neuroinflammation, metabolic alterations, and immune/inflammatory responses in such diseases.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Xinnong Chen ◽  
Xiaochen Guo ◽  
Qihui Ge ◽  
Yixuan Zhao ◽  
Huaiyu Mu ◽  
...  

The endoplasmic reticulum (ER) is an important organelle that regulates several fundamental cellular processes, and ER dysfunction has implications for many intracellular events. The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome is an intracellularly produced macromolecular complex that can trigger pyroptosis and inflammation, and its activation is induced by a variety of signals. ER stress has been found to affect NLRP3 inflammasome activation through multiple effects including the unfolded protein response (UPR), calcium or lipid metabolism, and reactive oxygen species (ROS) generation. Intriguingly, the role of ER stress in inflammasome activation has not attracted a great deal of attention. In addition, increasing evidence highlights that both ER stress and NLRP3 inflammasome activation contribute to atherosclerosis (AS). AS is a common cardiovascular disease with complex pathogenesis, and the precise mechanisms behind its pathogenesis remain to be determined. Both ER stress and the NLRP3 inflammasome have emerged as critical individual contributors of AS, and owing to the multiple associations between these two events, we speculate that they contribute to the mechanisms of pathogenesis in AS. In this review, we aim to summarize the molecular mechanisms of ER stress, NLRP3 inflammasome activation, and the cross talk between these two pathways in AS in the hopes of providing new pharmacological targets for AS treatment.


Sign in / Sign up

Export Citation Format

Share Document