scholarly journals αvβ3Integrin Mediates the Cell-adhesive Capacity and Biological Activity of Basic Fibroblast Growth Factor (FGF-2) in Cultured Endothelial Cells

1997 ◽  
Vol 8 (12) ◽  
pp. 2449-2461 ◽  
Author(s):  
Marco Rusnati ◽  
Elena Tanghetti ◽  
Patrizia Dell’Era ◽  
Anna Gualandris ◽  
Marco Presta

Fibroblast growth factor-2 (FGF-2) immobilized on non-tissue culture plastic promotes adhesion and spreading of bovine and human endothelial cells that are inhibited by anti-FGF-2 antibody. Heat-inactivated FGF-2 retains its cell-adhesive activity despite its incapacity to bind to tyrosine-kinase FGF receptors or to cell-surface heparan sulfate proteoglycans. Recombinant glutathione-S-transferase-FGF-2 chimeras and synthetic FGF-2 fragments identify two cell-adhesive domains in FGF-2 corresponding to amino acid sequences 38–61 and 82–101. Both regions are distinct from the FGF-receptor-binding domain of FGF-2 and contain a DGR sequence that is the inverse of the RGD cell-recognition sequence. Calcium deprivation, RGD-containing eptapeptides, soluble vitronectin (VN), but not fibronectin (FN), inhibit cell adhesion to FGF-2. Conversely, soluble FGF-2 prevents cell adhesion to VN but not FN, thus implicating VN receptor in the cell-adhesive activity of FGF-2. Accordingly, monoclonal and polyclonal anti-αvβ3antibodies prevent cell adhesion to FGF-2. Also, purified human αvβ3binds to immobilized FGF-2 in a cation-dependent manner, and this interaction is competed by soluble VN but not by soluble FN. Finally, anti-αvβ3monoclonal and polyclonal antibodies specifically inhibit mitogenesis and urokinase-type plasminogen activator (uPA) up-regulation induced by free FGF-2 in endothelial cells adherent to tissue culture plastic. These data demonstrate that FGF-2 interacts with αvβ3integrin and that this interaction mediates the capacity of the angiogenic growth factor to induce cell adhesion, mitogenesis, and uPA up-regulation in endothelial cells.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2662-2662
Author(s):  
Shannon L. Smiley ◽  
Dale O. Henry ◽  
Shang-Chiung Chen ◽  
Michael K.K. Wong

Abstract The association between cancer and thromboembolic disease is a well-known phenomenon and contributes to the morbidity and mortality of cancer patients. Clinical studies of thrombosis in these patients show that heparins may have beneficial effects on survival. Antithrombotic agents have been shown to exert an anti-tumor effect in various experimental models however the underlying mechanism remains unknown. We show that heparins inhibit in vivo tumor angiogenesis and offer molecular evidence that heparins exert an anti-angiogenic effect by directly sequestering fibroblast growth factor (FGF) from its receptor on tumor derived endothelial cells (TDECs). NIH-3T3 fibroblasts were stably transfected with an expression construct that results in the constitutive excretion of FGF-1 (Clone C). Clone C gives rise to aggressive and highly angiogenic xenograft tumors. Clone C was inoculated into nude mice and therapeutic doses of Low Molecular Weight (LMW) heparins were injected daily beginning on Day 2. Tumors in the control group were grossly angiogenic and highly vascularized. In contrast, the heparin treated tumors were pale and possessed only scant peri-tumoral vessels. In order to assess the biologic mechanism of this, murine TDECs were isolated and cultured as previously published. Unfractionated and LMW heparins inhibit FGF-induced TDEC mitogenesis in a concentration- and time-dependent manner. FGF overcame and rescued heparin-induced inhibition suggesting that an FGF-heparin interaction is responsible. In order to test the hypothesis that heparin strips and sequesters FGF off its receptor on TDECs, we used a FGF protein fused to a hemagglutinin peptide tag at the carboxyl-terminus end (FGF-HA). FGF-HA is biologically identical to wild type FGF, but its detection limit is 10X more sensitive. FGF-HA was allowed to bind to FGFR on TDECs. These cells were subsequently incubated with Heparin covalently linked to Sepharose beads (Heparin-Sepharose) or to Sepharose alone. These beads were removed, and TDEC growth analyzed prospectively. Heparin-Sepharose treatment results in significant TDEC growth inhibition as compared to incubation with Sepharose alone. Western blot analysis shows that FGF was sequestered only on the Heparin-Sepharose beads. Conclusion: The anti-angiogenic mechanism of heparins resides, in part, in its ability to sequester angiogenic cytokines such as FGF from its receptor on tumor endothelium.


Pteridines ◽  
2003 ◽  
Vol 14 (1) ◽  
pp. 9-12 ◽  
Author(s):  
Shunichi Shimizu ◽  
Yoshiyuki Miyasaka ◽  
Shinichiro Yamamoto ◽  
Masakazu Ishii ◽  
Yuji Kiuchi

Abstract The purpose of this study was to examine whether basic fibroblast growth factor (bFGF) stimulates tetrahydrobiopterin (BH4) synthesis in mouse brain microvascular endothelial cells. BH4 content was determined by oxidation under acidic conditions as biopterin and analysed with reversed-phase high Performance liquid chromatography. Measurement of the mRNA level of QTP-cyclohydrolase I (GTPCH), which is the rate-limiting enzyme of the de novo pathway of BH4 synthesis. The addition of bFGF to endothelial cells increased the BH4 content and GTPCH mRNA levels in an incubation period- and a concentration-dependent manner. 2,4-Diamino-6- hydroxypyrimidine, an inhibitor of GTPCH, strongly reduced the bFGF-induced increase in BH4 content. These findings suggest that bFGF stimulates BH4 synthesis via a de novo pathway with the induction of GTPCH.


2002 ◽  
Vol 67 (4) ◽  
pp. 1643-1652 ◽  
Author(s):  
P. Johnston ◽  
M. Nam ◽  
M. A. Hossain ◽  
R. R. Indurti ◽  
J. L. Mankowski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document