scholarly journals Mechanism of a Transcriptional Cross Talk between Transforming Growth Factor-β–regulated Smad3 and Smad4 Proteins and Orphan Nuclear Receptor Hepatocyte Nuclear Factor-4

2003 ◽  
Vol 14 (3) ◽  
pp. 1279-1294 ◽  
Author(s):  
Wan-Chih Chou ◽  
Vassiliki Prokova ◽  
Keiko Shiraishi ◽  
Ulrich Valcourt ◽  
Aristidis Moustakas ◽  
...  

We have shown previously that the transforming growth factor-β (TGFβ)-regulated Sma-Mad (Smad) protein 3 and Smad4 proteins transactivate the apolipoprotein C-III promoter in hepatic cells via a hormone response element that binds the nuclear receptor hepatocyte nuclear factor 4 (HNF-4). In the present study, we show that Smad3 and Smad4 but not Smad2 physically interact with HNF-4 via their Mad homology 1 domains both in vitro and in vivo.The synergistic transactivation of target promoters by Smads and HNF-4 was shown to depend on the specific promoter context and did not require an intact β-hairpin/DNA binding domain of the Smads. Using glutathione S-transferase interaction assays, we established that two regions of HNF-4, the N-terminal activation function 1 (AF-1) domain (aa 1–24) and the C-terminal F domain (aa 388–455) can mediate physical Smad3/HNF-4 interactions in vitro. In vivo, Smad3 and Smad4 proteins enhanced the transactivation function of various GAL4-HNF-4 fusion proteins via the AF-1 and the adjacent DNA binding domain, whereas a single tyrosine to alanine substitution in AF-1 abolished coactivation by Smads. The findings suggest that the transcriptional cross talk between the TGFβ-regulated Smads and HNF-4 is mediated by specific functional domains in the two types of transcription factors. Furthermore, the specificity of this interaction for certain target promoters may play an important role in various hepatocyte functions, which are regulated by TGFβ and the Smads.

2002 ◽  
Vol 22 (15) ◽  
pp. 5626-5637 ◽  
Author(s):  
Sohail Malik ◽  
Annika E. Wallberg ◽  
Yun Kyoung Kang ◽  
Robert G. Roeder

ABSTRACT The orphan nuclear receptor hepatocyte nuclear factor 4 (HNF-4) regulates the expression of many liver-specific genes both during development and in the adult animal. Towards understanding the molecular mechanisms by which HNF-4 functions, we have established in vitro transcription systems that faithfully recapitulate HNF-4 activity. Here we have focused on the coactivator requirements for HNF-4, especially for the multicomponent TRAP/SMCC/Mediator complex that has emerged as the central regulatory module of the transcription apparatus. Using a system that has been reconstituted from purified transcription factors, as well as one consisting of unfractionated nuclear extract from which TRAP/SMCC/Mediator has been depleted by specific antibodies, we demonstrate a strong dependence of HNF-4 function on this coactivator. Importantly, we further show a TRAP/SMCC/Mediator-dependence for HNF-4 transcriptional activation from chromatin templates. The latter involves cooperation with the histone acetyltransferase-containing coactivator p300, in accord with a synergistic mode of action of the two divergent coactivators. We also show that HNF-4 and TRAP/SMCC/Mediator can interact physically. This interaction likely involves primary HNF-4 activation function 2 (AF-2)-dependent interactions with the TRAP220 subunit of TRAP/SMCC/Mediator and secondary (AF-2-independent) interactions with TRAP170/RGR1. Finally, recruitment experiments using immobilized templates strongly suggest that the functional consequences of the physical interaction probably are manifested at a postrecruitment step in the activation pathway.


1996 ◽  
Vol 16 (4) ◽  
pp. 1824-1831 ◽  
Author(s):  
S Malik ◽  
S K Karathanasis

The orphan nuclear receptor hepatocyte nuclear factor 4 (HNF-4) is required for development and maintenance of the liver phenotype. HNF-4 activates several hepatocyte-specific genes, including the gene encoding apolipoprotein AI (apoAI), the major protein component of plasma high-density lipoprotein. The apoAI gene is activated by HNF-4 through a nuclear receptor binding element (site A) located in its liver-specific enhancer. To decipher the mechanism whereby HNF-4 enhances apoAI gene transcription, we have reconstituted its activity in a cell-free system. Functional HNF-4 was purified to homogeneity from a bacterial expression system. In in vitro transcription assays employing nuclear extract from HeLa cells, which do not contain HNF-4, recombinant HNF-4 stimulated transcription from basal promoters linked to site A. Activation by HNF-4 did not exhibit a ligand requirement, but phosphorylation of HNF-4 in the in vitro transcription system was observed. The activation function of HNF-4 was localized to a domain displaying strong homology to the conserved AF-2 region of nuclear receptors. Dissection of the transcription cycle revealed that HNF-4 activated transcription by facilitating assembly of a preinitiation complex intermediate consisting of TBP, the TATA box-binding protein component of TFIID and TFIID, via direct physical interactions with TFIIB. However, recruitment of TFIIB by HNF-4 was not sufficient for activation, since HNF-4 deletion derivatives lacking AF-2 bound TFIIB. On the basis of these results, HNF-4 appears to activate transcription at two distinct levels. The first step involves AF-2-independent recruitment of TFIIB to the promoter complex; the second step is AF-2 dependent and entails entry of preinitiation complex components acting downstream of TFIIB.


2007 ◽  
Vol 67 (4) ◽  
pp. 559-562 ◽  
Author(s):  
K Warstat ◽  
T Pap ◽  
G Klein ◽  
S Gay ◽  
W K Aicher

We showed previously that the attachment of synovial fibroblasts to laminin (LM)-111 in the presence of transforming growth factor-β induces significant expression of the matrix metalloproteinase (MMP)-3. Here we go on to investigate the regulation of additional MMPs and their specific tissue inhibitors of matrix proteases (TIMPs). Changes in steady-state mRNA levels encoding TIMPs and MMPs were investigated by quantitative reverse transcription–polymerase chain reaction. Production of MMPs was monitored by a multiplexed immunoarray. Signal transduction pathways were studied by immunoblotting. Attachment of synovial fibroblasts to LM-111 in the presence of transforming growth factor-β induced significant increases in MMP-3 mRNA (12.35-fold, p<0.001) and protein (mean 62 ng/ml, sixfold, p<0.008) and in expression of MMP-10 mRNA (11.68-fold, p<0.05) and protein (54 ng/ml, 20-fold, p⩾0.02). All other TIMPs and MMPs investigated failed to show this LM-111-facilitated transforming growth factor-β response. No phosphorylation of nuclear factor-κB was observed. We conclude that co-stimulation of synovial fibroblasts by LM-111 together with transforming growth factor-β suffices to induce significant expression of MMP-3 and MMP-10 by synovial fibroblasts and that this induction is independent of nuclear factor-κB phosphorylation.


2004 ◽  
Vol 72 (4) ◽  
pp. 1974-1982 ◽  
Author(s):  
M. S. Khalifeh ◽  
J. R. Stabel

ABSTRACT Gamma interferon (IFN-γ) plays a significant role in the control of mycobacterial infections, including Mycobacterium avium subsp. paratuberculosis. However, the contribution of other immunoregulatory cytokines, such as interleukin-10 (IL-10) and transforming growth factor β (TGF-β), in Johne's disease has not been investigated as yet. In this study, we examined the effects of in vivo and in vitro infection with M. avium subsp. paratuberculosis on the production of IFN-γ, IL-10, and TGF-β by peripheral blood mononuclear cells (PBMC). We also examined the effects of exogenous IFN-γ, IL-10, and TGF-β on M. avium subsp. paratuberculosis survival in the cell cultures. PBMC obtained from naturally infected cows, regardless of their disease status, specifically upregulated IL-10 and TGF-β in culture supernatants in response to stimulation with live M. avium subsp. paratuberculosis. Nonstimulated PBMC recovered from subclinically infected animals secreted the lowest levels of TGF-β, but after stimulation with live M. avium subsp. paratuberculosis, TGF-β levels in the culture supernatants increased to levels similar to that produced by PBMC from healthy animals. The numbers of viable M. avium subsp. paratuberculosis recovered from cultures from naturally infected animals were higher than those from healthy cows after in vitro infection with M. avium subsp. paratuberculosis. The addition of exogenous IL-10 and TGF-β to PBMC isolated from healthy cows inhibited the bactericidal activity of these cells as evidenced by the increased number of viable M. avium subsp. paratuberculosis recovered from these cultures compared to cell cultures containing medium alone. These data suggest important immune regulatory roles for IL-10 and TGF-β during infection with M. avium subsp. paratuberculosis that may be directly related to their effects on macrophage activation and killing of M. avium subsp. paratuberculosis.


1998 ◽  
Vol 9 (6) ◽  
pp. 1449-1463 ◽  
Author(s):  
Gian Maria Fimia ◽  
Vanesa Gottifredi ◽  
Barbara Bellei ◽  
Maria Rosaria Ricciardi ◽  
Agostino Tafuri ◽  
...  

It is commonly accepted that pathways that regulate proliferation/differentiation processes, if altered in their normal interplay, can lead to the induction of programmed cell death. In a previous work we reported that Polyoma virus Large Tumor antigen (PyLT) interferes with in vitro terminal differentiation of skeletal myoblasts by binding and inactivating the retinoblastoma antioncogene product. This inhibition occurs after the activation of some early steps of the myogenic program. In the present work we report that myoblasts expressing wild-type PyLT, when subjected to differentiation stimuli, undergo cell death and that this cell death can be defined as apoptosis. Apoptosis in PyLT-expressing myoblasts starts after growth factors removal, is promoted by cell confluence, and is temporally correlated with the expression of early markers of myogenic differentiation. The block of the initial events of myogenesis by transforming growth factor β or basic fibroblast growth factor prevents PyLT-induced apoptosis, while the acceleration of this process by the overexpression of the muscle-regulatory factor MyoD further increases cell death in this system. MyoD can induce PyLT-expressing myoblasts to accumulate RB, p21, and muscle- specific genes but is unable to induce G00arrest. Several markers of different phases of the cell cycle, such as cyclin A, cdk-2, and cdc-2, fail to be down-regulated, indicating the occurrence of cell cycle progression. It has been frequently suggested that apoptosis can result from an unbalanced cell cycle progression in the presence of a contrasting signal, such as growth factor deprivation. Our data involve differentiation pathways, as a further contrasting signal, in the generation of this conflict during myoblast cell apoptosis.


Sign in / Sign up

Export Citation Format

Share Document