scholarly journals Proteolytic Cleavage and Phosphorylation of a Tumor-associated ErbB4 Isoform Promote Ligand-independent Survival and Cancer Cell Growth

2006 ◽  
Vol 17 (1) ◽  
pp. 67-79 ◽  
Author(s):  
Jorma A. Määttä ◽  
Maria Sundvall ◽  
Teemu T. Junttila ◽  
Liisa Peri ◽  
V. Jukka O. Laine ◽  
...  

The ErbB1 and ErbB2 receptors are oncogenes with therapeutic significance in human cancer, whereas the transforming potential of the related ErbB4 receptor has remained controversial. Here, we have addressed whether four alternatively spliced ErbB4 isoforms differ in regulating cellular responses relevant for tumor growth. We show that the two tumor necrosis factor-α converting enzyme (TACE)-cleavable ErbB4 isoforms (the juxtamembrane [JM]-a isoforms) were overexpressed in a subset of primary human breast cancers together with TACE. The overexpression of the JM-a cytoplasmic (CYT)-2 ErbB4 isoform promoted ErbB4 phosphorylation, survival of interleukin-3-dependent cells, and proliferation of breast cancer cells even in the absence of ligand stimulation, whereas activation of the other three ErbB4 isoforms required ligand stimulation. Ligand-independent cellular responses to ErbB4 JM-a CYT-2 overexpression were regulated by both tyrosine kinase activity and a two-step proteolytic generation of an intracellular receptor fragment involving first a TACE-like proteinase, followed by γ-secretase activity. These data suggest a novel transforming mechanism for the ErbB4 receptor in human breast cancer that is 1) specific for a single receptor isoform and 2) depends on proteinase cleavage and kinase activity but not ligand activation of the receptor.

Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2006 ◽  
Author(s):  
Kang-Hoon Lee ◽  
Hyeon-Ji Hwang ◽  
Hyun Ji Noh ◽  
Tae-Jin Shin ◽  
Je-Yoel Cho

Breast cancer is one of the most frequently diagnosed cancers in both women and female dogs. Genome-wide association studies in human breast cancer (HBC) have identified hundreds of genetic variations and somatic driver mutations. However, only a handful of variants have been studied for rare HBC and their associations remain inconclusive. Spontaneous canine mammary tumor (CMT) is a great model for HBC, with clinical similarity. We thus performed whole-exome sequencing in 20 pairs of CMT and normal tissues in dogs. We newly found that PIK3CA was the most frequently mutated gene in CMT (45%). Furthermore, canine PIK3CA A3140G (H1047R), at what is known as the mutational hotspot of HBC, is also a hotspot in CMT. Targeted sequencing confirmed that 29% of CMTs had the same PIK3CA A3140G mutation. Integration of the transcriptome suggests that the PIK3CA (H1047R) induced cell metabolism and cell cycle via an increase of PCK2 and a decrease of CDKN1B but had no effect on cell apoptosis. We identified additional significantly mutated genes, including SCRN1 and CLHC1, which have not been reported in HBC. Our study recapitulated some known HBC-associated genes and human cancer signatures in CMT, and identified novel genes that may be relevant to HBC. This study may allow us to better understand both HBC and CMT and lend new insights into the development of biomarkers.


2020 ◽  
Vol 16 (7) ◽  
pp. 958-968
Author(s):  
Yunrui Cai ◽  
Tong Chen ◽  
Huajian Zhu ◽  
Hongbin Zou

Background: The development of novel antineoplastic agents remains highly desirable. Objective: This study focuses on the design, synthesis, and antitumor evaluation of phenyl ureas bearing 5-fluoroindolin-2-one moiety. Methods: Three sets of phenylureas were designed and synthesized and their antiproliferative ability was measured against four human carcinoma cell lines (Hela, Eca-109, A549, and MCF-7) via MTT assay. In vivo anticancer activity was further evaluated in xenograft models of human breast cancer (MCF-7). Results: A total of twenty-one new compounds were synthesized and characterized by means of 1H and 13C NMR as well as HR-MS. Three sets of compounds (1a‒1c, 2a‒2c, and 3a‒3c) were initially constructed, and preliminary antiproliferative activities of these molecules were evaluated against Hela, Eca-109, A549 and MCF-7, highlighting the meta-substituted phenylureas (1a‒1c) as the most cytotoxic set. A series of meta-substituted phenylureas derivatives (1d‒1o) were then designed and synthesized for structure-activity relationship study. Most of the new compounds showed desirable cytotoxicity, among which compound 1g exhibited the most remarkable cytotoxic effects against the tested human cancer cells with IC50 values ranging from 1.47 to 6.79 μM. Further studies showed that compound 1g suppressed tumor growth in human breast cancer (MCF- 7) xenograft models without affecting the body weight of its recipients. Conclusion: In this study, twenty-one new compounds, containing the privileged structures of phenylurea and 5-fluoroindolin-2-one, were designed and synthesized. Subsequent structureactivity studies showed that 1g was the most bioactive antitumor agent among all tested compounds, hence a potentially promising lead compound once given further optimization.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 942
Author(s):  
Mei Qi Kwa ◽  
Rafael Brandao ◽  
Trong H. Phung ◽  
Jianfeng Ge ◽  
Giuseppe Scieri ◽  
...  

MRCKα is a ubiquitously expressed serine/threonine kinase involved in cell contraction and F-actin turnover, which is highly amplified in human breast cancer and part of a gene expression signature for bad prognosis. Nothing is known about the in vivo function of MRCKα. To explore MRCKα function in development and in breast cancer, we generated mice lacking a functional MRCKα gene. Mice were born close to the Mendelian ratio and showed no obvious phenotype including a normal mammary gland formation. Assessing breast cancer development using the transgenic MMTV-PyMT mouse model, loss of MRCKα did not affect tumor onset, tumor growth and metastasis formation. Deleting MRCKα and its related family member MRCKβ in two triple-negative breast cancer cell lines resulted in reduced invasion of MDA-MB-231 cells, but did not affect migration of 4T1 cells. Further genomic analysis of human breast cancers revealed that MRCKα is frequently co-amplified with the oncogenes ARID4B and AKT3 which might contribute to the prognostic value of MRCKα expression. Collectively, these data suggest that MRCKα might be a prognostic marker for breast cancer, but probably of limited functional importance.


Endocrinology ◽  
2000 ◽  
Vol 141 (12) ◽  
pp. 4357-4364 ◽  
Author(s):  
Jennifer L. Sanders ◽  
Naibedya Chattopadhyay ◽  
Olga Kifor ◽  
Toru Yamaguchi ◽  
Robert R. Butters ◽  
...  

Abstract Metastasis of breast cancer to bone occurs with advanced disease and produces substantial morbidity. Secretion of PTH-related peptide (PTHrP) from breast cancer cells is thought to play a key role in osteolytic metastases and is increased by transforming growth factor-β (TGFβ), which is released from resorbed bone. Elevated extracellular calcium (Cao2+) also stimulates PTHrP secretion from various normal and malignant cells, an action that could potentially be mediated by the Cao2+-sensing receptor (CaR) originally cloned from the parathyroid gland. Indeed, we previously showed that both normal breast ductal epithelial cells and primary breast cancers express the CaR. In this study we investigated whether the MCF-7 and MDA-MB-231 human breast cancer cell lines express the CaR and whether CaR agonists modulate PTHrP secretion. Northern blot analysis and RT-PCR revealed bona fide CaR transcripts, and immunocytochemistry and Western analysis with a specific anti-CaR antiserum demonstrated CaR protein expression in both breast cancer cell lines. Furthermore, elevated Cao2+ and the polycationic CaR agonists, neomycin and spermine, stimulated PTHrP secretion dose dependently, with maximal, 2.1- to 2.3-fold stimulation. In addition, pretreatment of MDA-MB-231 cells overnight with TGFβ1 (0.2, 1, or 5 ng/ml) augmented both basal and high Cao2+-stimulated PTHrP secretion. Thus, in PTHrP-secreting breast cancers metastatic to bone, the CaR could potentially participate in a vicious cycle in which PTHrP-induced bone resorption raises the levels of Cao2+ and TGFβ within the bony microenvironment, which then act in concert to evoke further PTHrP release and worsening osteolysis.


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Nadine Goldhammer ◽  
Jiyoung Kim ◽  
Vera Timmermans-Wielenga ◽  
Ole William Petersen

AbstractOrganoid cultures are increasingly used to model human cancers experimentally with a view to tailoring personalized medicine and predicting drug responses. Breast cancer is no exception, but in particular, primary breast cancer poses some inherent difficulties due to the frequent presence of residual non-malignant cells in the biopsies. We originally developed an assay for the distinction between malignant and non-malignant structures in primary breast cancer organoid cultures (Petersen et al., Proc Natl Acad Sci (USA) 89(19):9064–8, 1992). Here, we apply this assay to assess the frequency of normal-like organoids in primary breast carcinoma cultures and the cellular composition as a consequence of passaging. We find that in consecutively collected samples of primary human breast cancers, residual non-malignant tissues were observed histologically in five out of ten biopsies. Based on relevant morphogenesis and correct polarization as recorded by expression in luminal epithelial cells of mucin 1 (Muc1), occludin, and keratin 19 (K19) and expression in basal cells of integrin β4, p63, and K14, non-malignant organoids were present in all primary human breast cancer-derived cultures. Furthermore, passaging in a contemporary culture medium was in favor of the selective expansion of basal-like cells. We conclude that organoid cultures of human breast cancers are most representative of the tissue origin in primary culture.


Sign in / Sign up

Export Citation Format

Share Document