scholarly journals Initiation of Attachment and Generation of Mature Focal Adhesions by Integrin-containing Filopodia in Cell Spreading

2006 ◽  
Vol 17 (10) ◽  
pp. 4237-4248 ◽  
Author(s):  
Michael A. Partridge ◽  
Eugene E. Marcantonio

Integrin receptors, and associated cytoplasmic proteins mediate adhesion, cell signaling and connections to the cytoskeleton. Using fluorescent protein chimeras, we analyzed initial integrin adhesion in spreading fibroblasts with Total Internal Reflection Fluorescence (TIRF) microscopy. Surprisingly, sequential radial projection of integrin and actin containing filopodia formed the initial cell-matrix contacts. These Cdc42-dependent, integrin-containing projections recruited cytoplasmic focal adhesion (FA) proteins in a hierarchical manner; initially talin with integrin and subsequently FAK and paxillin. Radial FA structures then anchored cortical actin bridges between them and subsequently cells reorganized their actin, a process promoted by Src, and characterized by lateral FA reorientation to provide anchor points for actin stress fibers. Finally, the nascent adhesions coalesced until they formed mature FAs.

2000 ◽  
Vol 113 (11) ◽  
pp. 1951-1961 ◽  
Author(s):  
V. Martel ◽  
L. Vignoud ◽  
S. Dupe ◽  
P. Frachet ◽  
M.R. Block ◽  
...  

Talin is a major cytosolic protein that links the intracellular domains of beta1 and beta3 integrins to the cytoskeleton. It is required for focal adhesion assembly. However, its downregulation not only slows down cell spreading and organization of focal adhesions but also impairs the maturation of some beta1 integrins, including the fibronectin receptor alpha5beta1. To investigate this, we characterized the beta1 integrin synthesized in cells expressing talin anti-sense RNA (AT22 cells). We identified a large intracellular pool of beta1 integrins that is abnormally accumulated in an earlier compartment of the secretory pathway. In this report, we show that in talin-deficient AT22 cells, the aberrant glycosylation of integrin receptors is accompanied by a delay in the export of the integrin alpha5beta1. In normal cells, talin was found associated with beta1 integrins in an enriched membrane fraction containing Golgi and endoplasmic reticulum. Finally, microinjection of anti-talin antibodies resulted in accumulation of the integrins within the cells. These data strongly suggest that talin plays a specific role in the export of newly synthesized integrins. We propose that talin binding to the integrin may disclose a diphenylalanine export signal, which is present in the membrane-proximal GFFKR motif conserved in all integrin alpha chains.


2001 ◽  
Vol 152 (6) ◽  
pp. 1169-1182 ◽  
Author(s):  
Josephine C. Adams ◽  
Nina Kureishy ◽  
Amanda L. Taylor

An important role of cell matrix adhesion receptors is to mediate transmembrane coupling between extracellular matrix attachment, actin reorganization, and cell spreading. Thrombospondin (TSP)-1 is a modulatory component of matrix expressed during development, immune response, or wound repair. Cell adhesion to TSP-1 involves formation of biochemically distinct matrix contacts based on stable fascin spikes. The cell surface adhesion receptors required have not been identified. We report here that antibody clustering of syndecan-1 proteoglycan specifically transduces organization of cortical actin and fascin bundles in several cell types. Transfection of COS-7 cells with syndecan-1 is sufficient to stimulate cell spreading, fascin spike assembly, and extensive protrusive lateral ruffling on TSP-1 or on syndecan-1 antibody. The underlying molecular mechanism depends on glycosaminoglycan (GAG) modification of the syndecan-1 core protein at residues S45 or S47 for cell membrane spreading and on the VC2 region of the cytoplasmic domain for spreading and fascin spike formation. Expression of the VC2 deletion mutant or GAG-negative syndecan-1 showed that syndecan-1 is necessary in spreading and fascin spike formation by C2C12 cells on TSP-1. These results establish a novel role for syndecan-1 protein in coupling a physiological matrix ligand to formation of a specific matrix contact structure.


2003 ◽  
Vol 284 (3) ◽  
pp. C681-C695 ◽  
Author(s):  
Paul A. Robinson ◽  
Susan Brown ◽  
Meagan J. McGrath ◽  
Imogen D. Coghill ◽  
Rajendra Gurung ◽  
...  

The skeletal muscle LIM protein 1 (SLIM1) is highly expressed in skeletal and cardiac muscle, and its expression is downregulated significantly in dilated human cardiomyopathy. However, the function of SLIM1 is unknown. In this study, we investigated the intracellular localization of SLIM1. Endogenous and recombinant SLIM1 localized to the nucleus, stress fibers, and focal adhesions in skeletal myoblasts plated on fibronectin, collagen, or laminin. However, after inhibition of integrin signaling either by plating on poly-l-lysine or by soluble RGD peptide, SLIM1 localized diffusely in the cytosol, with decreased nuclear expression. Disruption of the actin cytoskeleton by cytochalasin D did not inhibit nuclear localization of SLIM1 in integrin-activated cells. Green fluorescent protein-tagged SLIM1 shuttled in the nucleus of untransfected NIH 3T3 cells, in a heterokaryon fusion assay. Overexpression of SLIM1 in Sol8 myoblasts inhibited cell adhesion and promoted cell spreading and migration. These studies show SLIM1 localizes in an integrin-dependent manner to the nucleus and focal adhesions where it functions downstream of integrin activation to promote cell spreading and migration.


2004 ◽  
Vol 15 (6) ◽  
pp. 2943-2953 ◽  
Author(s):  
Celeste M. Nelson ◽  
Dana M. Pirone ◽  
John L. Tan ◽  
Christopher S. Chen

Changes in vascular endothelial (VE)-cadherin–mediated cell-cell adhesion and integrin-mediated cell-matrix adhesion coordinate to affect the physical and mechanical rearrangements of the endothelium, although the mechanisms for such cross talk remain undefined. Herein, we describe the regulation of focal adhesion formation and cytoskeletal tension by intercellular VE-cadherin engagement, and the molecular mechanism by which this occurs. Increasing the density of endothelial cells to increase cell-cell contact decreased focal adhesions by decreasing cell spreading. This contact inhibition of cell spreading was blocked by disrupting VE-cadherin engagement with an adenovirus encoding dominant negative VE-cadherin. When changes in cell spreading were prevented by culturing cells on a micropatterned substrate, VE-cadherin–mediated cell-cell contact paradoxically increased focal adhesion formation. We show that VE-cadherin engagement mediates each of these effects by inducing both a transient and sustained activation of RhoA. Both the increase and decrease in cell-matrix adhesion were blocked by disrupting intracellular tension and signaling through the Rho-ROCK pathway. In all, these findings demonstrate that VE-cadherin signals through RhoA and the actin cytoskeleton to cross talk with cell-matrix adhesion and thereby define a novel pathway by which cell-cell contact alters the global mechanical and functional state of cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
W. Tucker Shelton ◽  
S. Madison Thomas ◽  
Hunter R. Alexander ◽  
C. Evan Thomes ◽  
Daniel E. Conway ◽  
...  

AbstractDesmosomes have a central role in mediating extracellular adhesion between cells, but they also coordinate other biological processes such as proliferation, differentiation, apoptosis and migration. In particular, several lines of evidence have implicated desmosomal proteins in regulating the actin cytoskeleton and attachment to the extracellular matrix, indicating signaling crosstalk between cell–cell junctions and cell–matrix adhesions. In our study, we found that cells lacking the desmosomal cadherin Desmoglein-2 (Dsg2) displayed a significant increase in spreading area on both fibronectin and collagen, compared to control A431 cells. Intriguingly, this effect was observed in single spreading cells, indicating that Dsg2 can exert its effects on cell spreading independent of cell–cell adhesion. We hypothesized that Dsg2 may mediate cell–matrix adhesion via control of Rap1 GTPase, which is well known as a central regulator of cell spreading dynamics. We show that Rap1 activity is elevated in Dsg2 knockout cells, and that Dsg2 harnesses Rap1 and downstream TGFβ signaling to influence both cell spreading and focal adhesion protein phosphorylation. Further analysis implicated the Rap GEF PDZ-GEF2 in mediating Dsg2-dependent cell spreading. These data have identified a novel role for Dsg2 in controlling cell spreading, providing insight into the mechanisms via which cadherins exert non-canonical junction-independent effects.


Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 155-165 ◽  
Author(s):  
Janet M Murray ◽  
Douglas I Johnson

Abstract The Cdc42p GTPase and its regulators, such as the Saccharomyces cerevisiae Cdc24p guanine-nucleotide exchange factor, control signal-transduction pathways in eukaryotic cells leading to actin rearrangements. A cross-species genetic screen was initiated based on the ability of negative regulators of Cdc42p to reverse the Schizosaccharomyces pombe Cdc42p suppression of a S. cerevisiae cdc24ts mutant. A total of 32 S. pombe nrf (negative regulator of Cdc forty two) cDNAs were isolated that reversed the suppression. One cDNA, nrf1+, encoded an ~15 kD protein with three potential transmembrane domains and 78% amino-acid identity to a S. cerevisiae gene, designated NRF1. A S. pombe Δnrf1 mutant was viable but overexpression of nrf1+ in S. pombe resulted in dose-dependent lethality, with cells exhibiting an ellipsoidal morphology indicative of loss of polarized cell growth along with partially delocalized cortical actin and large vacuoles. nrf1+ also displayed synthetic overdose phenotypes with cdc42 and pak1 alleles. Green fluorescent protein (GFP)-Cdc42p and GFP-Nrf1p colocalized to intracellular membranes, including vacuolar membranes, and to sites of septum formation during cytokinesis. GFP-Nrf1p vacuolar localization depended on the S. pombe Cdc24p homolog Scd1p. Taken together, these data are consistent with Nrf1p functioning as a negative regulator of Cdc42p within the cell polarity pathway.


2001 ◽  
Vol 7 (S2) ◽  
pp. 34-35
Author(s):  
Derek Toomre ◽  
Patrick Keller ◽  
Elena Diaz ◽  
Jamie White ◽  
Kai Simons

Post-Golgi sorting of different classes of newly synthesized proteins and lipids is central to the generation and maintenance of cellular polarity. to directly visualize the dynamics and location of apical/basolateral sorting and trafficking we used fast time-lapse multicolor video microscopy in living cells. Specifically, green fluorescent protein color variants (cyan, CFP; yellow, YFP) of apical cargo (GPI-anchored) and basolateral cargo (vesicular stomatitis virus glycoprotein, VSVG) were generated; see FIG 1. Fast dual color fluorescence video microscopy allowed visualization with high temporal and spatial resolution. Our studies revealed that apical and basolateral cargo progressively segregated into large domains in Golgi/TGN structures, excluded resident proteins, and exited in separate transport containers. These carries remained distinct and did not merge with endocytic structures en route to the plasma membrane. Interestingly, our data suggest that the primary sorting occurs by lateral segregation in the Golgi, prior to budding (FIG 2). Further characterization of morphological differences of apical versus basolateral transport carriers was achieved using a specialized microscopy technique called total internal reflection (TIR) microscopy. with this approach only the bottom of the cell (<100 nm) was illuminated by an exponentially decaying evanescent “wave” of light. A series of images, taken at ∼1 second intervals, shows a bright “flash” of fluorescence when the vesicle fuse with the plasma membrane and the fluorophore diffuses into the plasma membrane (FIG 3).


2005 ◽  
Vol 303 (2) ◽  
pp. 218-228 ◽  
Author(s):  
Donna M. Peters ◽  
Kathleen Herbert ◽  
Brenda Biddick ◽  
Jennifer A. Peterson

2005 ◽  
Vol 288 (1) ◽  
pp. C46-C56 ◽  
Author(s):  
Camille Ehre ◽  
Andrea H. Rossi ◽  
Lubna H. Abdullah ◽  
Kathleen De Pestel ◽  
Sandra Hill ◽  
...  

Airway goblet cells secrete mucin onto mucosal surfaces under the regulation of an apical, phospholipase C/Gq-coupled P2Y2receptor. We tested whether cortical actin filaments negatively regulate exocytosis in goblet cells by forming a barrier between secretory granules and plasma membrane docking sites as postulated for other secretory cells. Immunostaining of human lung tissues and SPOC1 cells (an epithelial, mucin-secreting cell line) revealed an apical distribution of β- and γ-actin in ciliated and goblet cells. In goblet cells, actin appeared as a prominent subplasmalemmal sheet lying between granules and the apical membrane, and it disappeared from SPOC1 cells activated by purinergic agonist. Disruption of actin filaments with latrunculin A stimulated SPOC1 cell mucin secretion under basal and agonist-activated conditions, whereas stabilization with jasplakinolide or overexpression of β- or γ-actin conjugated to yellow fluorescent protein (YFP) inhibited secretion. Myristoylated alanine-rich C kinase substrate, a PKC-activated actin-plasma membrane tethering protein, was phosphorylated after agonist stimulation, suggesting a translocation to the cytosol. Scinderin (or adseverin), a Ca2+-activated actin filament severing and capping protein was cloned from human airway and SPOC1 cells, and synthetic peptides corresponding to its actin-binding domains inhibited mucin secretion. We conclude that actin filaments negatively regulate mucin secretion basally in airway goblet cells and are dynamically remodeled in agonist-stimulated cells to promote exocytosis.


1982 ◽  
Vol 208 (2) ◽  
pp. 473-478 ◽  
Author(s):  
D D McAbee ◽  
F Grinnell

Studies were carried out to learn more about the critical SH groups involved in cell spreading. Pretreatment of suspended baby hamster kidney (BHK) cells with 3 mM-iodoacetate or iodoacetamide for 10 min at 4 degrees C completely inhibited the ability of the cells to spread on fibronectin-coated substrata. If, however, BHK cells were permitted to attach and spread before being treated with the SH-binding reagents, and then harvested by trypsinization and assayed for spreading on fibronectin-coated substrata, there was no inhibition of cell spreading. The extent of prior attachment required before the cells became insensitive to the SH-binding reagents was tested and was found to occur early during the cell adhesion process, before any cell spreading was observed. In analytical experiments, there did not appear to be any difference in the total number of SH groups between suspended or spread cells as determined with 5,5′-dithiobis-(2-nitrobenzoic acid). The uptake of radiolabelled iodoacetate into intact spread cells, however, was found to be 3.5 times less than that found with suspended cells. On the other hand, the distribution of incorporated radioactivity into suspended and spread cells was similar. Most of the radioactivity (approximately 70%) was incorporated into small molecules (e.g. glutathione and cysteine), less (approximately 20%) was incorporated into cytoplasmic proteins, and the least incorporation (approximately 10%) was into the cell cytoskeleton. The data are interpreted to indicate there is a decreased permeability of spread cells to the SH-binding reagents.


Sign in / Sign up

Export Citation Format

Share Document