scholarly journals Zic3 Is Required for Maintenance of Pluripotency in Embryonic Stem Cells

2007 ◽  
Vol 18 (4) ◽  
pp. 1348-1358 ◽  
Author(s):  
Linda Shushan Lim ◽  
Yuin-Han Loh ◽  
Weiwei Zhang ◽  
Yixun Li ◽  
Xi Chen ◽  
...  

Embryonic stem (ES) cell pluripotency is dependent upon sustained expression of the key transcriptional regulators Oct4, Nanog, and Sox2. Dissection of the regulatory networks downstream of these transcription factors has provided critical insight into the molecular mechanisms that regulate ES cell pluripotency and early differentiation. Here we describe a role for Zic3, a member of the Gli family of zinc finger transcription factors, in the maintenance of pluripotency in ES cells. We show that Zic3 is expressed in ES cells and that this expression is repressed upon differentiation. The expression of Zic3 in pluripotent ES cells is also directly regulated by Oct4, Sox2, and Nanog. Targeted repression of Zic3 in human and mouse ES cells by RNA interference–induced expression of several markers of the endodermal lineage. Notably, the expression of Nanog, a key pluripotency regulator and repressor of extraembryonic endoderm specification in ES cells, was significantly reduced in Zic3 knockdown cells. This suggests that Zic3 may prevent endodermal marker expression through Nanog-regulated pathways. Thus our results extend the ES cell transcriptional network beyond Oct4, Nanog, and Sox2, and further establish that Zic3 plays an important role in the maintenance of pluripotency by preventing endodermal lineage specification in embryonic stem cells.

1990 ◽  
Vol 10 (12) ◽  
pp. 6755-6758
Author(s):  
B R Stanton ◽  
S W Reid ◽  
L F Parada

We have disrupted one allele of the N-myc locus in mouse embryonic stem (ES) cells by using homologous recombination techniques and have obtained germ line transmission of null N-myc ES cell lines with transmission of the null N-myc allele to the offspring. The creation of mice with a deficient N-myc allele will allow the generation of offspring bearing null N-myc alleles in both chromosomes and permit study of the role that this proto-oncogene plays in embryonic development.


2021 ◽  
pp. 21-37
Author(s):  
Jonathan Slack

‘Embryonic stem cells’ focuses on embryonic stem (ES) cells, which are grown in tissue culture from the inner cell mass of a mammalian blastocyst-stage embryo. Human ES cells offer a potential route to making the kinds of cells needed for cell therapy. ES cells were originally prepared from mouse embryos. Although somewhat different, cells grown from inner cell masses of human embryos share many properties with mouse ES cells, such as being able to grow without limit and to generate differentiated cell types. Mouse ES cells have so far been of greater practical importance than those of humans because they have enabled a substantial research industry based on the creation of genetically modified mice.


2008 ◽  
Vol 115 (2) ◽  
pp. 43-55 ◽  
Author(s):  
Cecilia Annerén

Pluripotent ES (embryonic stem) cells can be expanded in culture and induced to differentiate into a wide range of cell types. Self-renewal of ES cells involves proliferation with concomitant suppression of differentiation. Some critical and conserved pathways regulating self-renewal in both human and mouse ES cells have been identified, but there is also evidence suggesting significant species differences. Cytoplasmic and receptor tyrosine kinases play important roles in proliferation, survival, self-renewal and differentiation in stem, progenitor and adult cells. The present review focuses on the role of tyrosine kinase signalling for maintenance of the undifferentiated state, proliferation, survival and early differentiation of ES cells.


2012 ◽  
Vol 529-530 ◽  
pp. 385-390
Author(s):  
Koichi Imai ◽  
Fumio Watari ◽  
Kazuaki Nakamura ◽  
Akito Tanoue

The risks of nanomaterials for future generations should be elucidated. Thus, it is important to establish an experimental method to accurately examine embryotoxicity. We have conducted anin vitroembryotoxicity test with mouse ES cells to examine the embryotoxicities of various nanomaterials. In this study, the C60 fullerene did not influence the differentiation of ES-D3 cells and "non embryotoxicity". In the future, the biological safety should be comprehensively examined by improving dispersion in medium.


Author(s):  
Mikael C. O. Englund ◽  
Christopher L. R. Barratt

Ever since the first human embryonic stem cells (hES) were successfully derived and propagated in 1998 (1), an obvious topic of discussion has been the development of novel therapies based on stem cell technology for a number of diseases and conditions. Targets could include type 1 diabetes, Alzheimer’s disease, spinal cord injury, and Parkinson’s disease to name a few. hES cells can also be used for tissue engineering, to replace for example bone and cartilage, and for drug discovery. Exciting proof of principal experiments in animals demonstrate the clinical potential in this field. For example, in a rat model of Parkinson’s disease, dopamine neural grafts derived from mouse Es cells showed long-term survival, the production of dopamine and, importantly, persistent improvements in movement behaviour (2). The promises of these potential treatments is enormous. However, there are many hurdles to overcome before a therapy based on stem cells is a clinical reality. We outline (A) the variety of methods to derive hES cells including somatic cell nuclear transfer (SCNT) and describe the challenges and possible avenues of further use; (B) discuss the development of clinical grade hES cells and their use in the drug discovery process; and (C) alternative strategies to patient specific therapy including induced adult pluripotent stem cells (iPS cells).


1990 ◽  
Vol 10 (12) ◽  
pp. 6755-6758 ◽  
Author(s):  
B R Stanton ◽  
S W Reid ◽  
L F Parada

We have disrupted one allele of the N-myc locus in mouse embryonic stem (ES) cells by using homologous recombination techniques and have obtained germ line transmission of null N-myc ES cell lines with transmission of the null N-myc allele to the offspring. The creation of mice with a deficient N-myc allele will allow the generation of offspring bearing null N-myc alleles in both chromosomes and permit study of the role that this proto-oncogene plays in embryonic development.


Development ◽  
1990 ◽  
Vol 110 (4) ◽  
pp. 1241-1248 ◽  
Author(s):  
Y. Lallemand ◽  
P. Brulet

An embryonic stem (ES) cell line stably expressing lacZ under the control of an endogenous promoter has been isolated and used as a marker to follow the fate of ES cells injected into blastocysts and morulae, before midgestation. The results show a multisite pattern of blastocyst colonization by ES cells deposited into the blastocoel cavity and a low degree of mingling between ES cells and ICM cells. Furthermore, analysis of dispersal of ES cell descendants in postimplantation chimaeric embryos showed that colonization can be highly variable from one region of the embryo to another. In contrast, a high and reproducible degree of chimaerism was obtained when the ES cells were injected at the morula stage prior to ICM formation.


2011 ◽  
Author(s):  
Μαρία Καπασά

Mammalian development occurs by the progressive determination of cells from a pluripotent undifferentiated state through successive states of gradually restricted developmental potential, until the full complement of mature terminally differentiated cells has been specified. Embryonic development is a complex and highly orchestrated process during which multiple cell movements and changes in gene expression must be spatially and temporally coordinated to ensure that embryogenesis proceeds correctly. Complex genetic regulatory networks receive input in the form of extracellular signals and output instructions on the regulated expression of specific genes. The linchpins of the regulatory networks are the cis-regulatory elements that directly control gene expression through interpretation of the tissue-specific transcription factors (trans-elements). Embryonic stem cells are orientated across the dorso-ventral and the anterior-posterior axis of the early embryo. The orientation of progenitor cells along these two axes is thought to influence their fate by defining the identity and concentration of inductive signals to which they are exposed.In an effort to develop cell-based therapies, (i.e. for diabetes) experimental protocols aim to mimic the biological procedures that take place during embryonic development in order to differentiate embryonic stem cells towards specific cell types. One of the foremost challenges towards the development of cell therapies for diabetic people is to achieve the directed differentiation of cells capable of producing insulin. Elucidation of the genetic networks involved in the endocrine pancreas specification are thought to be essential for devising rational protocols to efficiently differentiate embryonic stem cells or pancreas progenitor cells into fully differentiated endocrine subtypes. Computational approaches allow the unravelling of complex regulatory networks including genomic (cis-cis) or proteomic (trans-trans) interactions or a combination (cis-trans) of both. In this study the genomic regulatory regions (cis elements) of several genes known and putative targets of the transcription factor NGN3 were analyzed. The NGN3 transcription factor is the major regulator of “insulin-producing cell” formation. Taking into account data from microarray experiments from pancreas progenitor cells, in which NGN3 has been induced, genes shown to be co-regulated (upregulated or downregulated) by this transcription factor were selected for analysis. Using a combination of sophisticated computational tools for exploiting and analyzing genomic data and developing the suitable algorithms, an extensive in silico analysis of the regulatory regions of these genes was performed.Evolutionarily conserved regions are linked with experimentally identified regulatory elements. Comparative genomics are commonly used in order to identify transcription factor binding sites, which are functionally important regions that are thought to be well-conserved. Analysis of genomic regulatory regions included not only genes corregulated by NGN3, but also their orthologs in several species including the most phylogenetically distant species (fish), which have pancreas. In parallel, housekeeping genes, like B-ACTIN, and those not expressed in embryos and stem cells, like B-GLOBIN, were used as negative controls. Regulatory region analysis revealed the presence of a highly conserved regulatory element, where many transcription factors with established involvement in pancreas development bind, in all the orthologs of several genes co-regulated by NGN3. Furthermore, motif identification in separate clusters of the regulatory elements of either upregulated or downregulated genes revealed the presence of additional binding motifs for the factor AP4 only in downregulated genes. In parallel, the regulatory region analysis of the entire mouse genome and the statistical analysis of the upcoming results showed that both types of regulatory elements (with and without AP4) were non-randomly identified inside the regulatory regions of genes whose transcription is controlled by NGN3. Moreover the selective presence of the AP4 binding sequence into this region renders it a highly specific suppressor found in only a small number of genes downregulated by NGN3. Taking into account that both these regulatory elements were identified at considerable distances from each gene’s transcription start site, it was assumed that they represent enhancers, and those capable of binding AP4 were considered silencers. This conclusion was enforced by the compositional analysis of these regions showing low GC levels, similarly to the majority of the regulatory regions implicated in embryonic development, something that has not been reported for promoter sequences. Moreover, analysis of protein-protein interactions showed that some of the transcription factors, predicted to bind onto these elements, together with other non-specific transcription factors, constitute a core transcription control complex. This protein complex interacts with the remaining members of the predicted cluster of transcription regulators and works either as an inducer or a suppressor of transcription. This is determined by the presence of a HAT and/or an HDAC in this protein complex assumed to locally control chromatin acetylation. Based on these data, we constructed a model of the complex regulatory network that describes how through the transcriptional regulation of the analyzed genes mainly guided by ΝGN3 the gradual differentiation of cells capable of producing insulin takes place.


2009 ◽  
Vol 18 (4) ◽  
pp. 381-389 ◽  
Author(s):  
Yujiro Tanaka ◽  
Tamako Ikeda ◽  
Yukiko Kishi ◽  
Shigeo Masuda ◽  
Hiroaki Shibata ◽  
...  

The ERas gene promotes the proliferation of and formation of teratomas by mouse embryonic stem (ES) cells. However, its human orthologue is not expressed in human ES cells. This implies that the behavior of transplanted mouse ES cells would not accurately reflect the behavior of transplanted human ES cells and that the use of nonhuman primate models might be more appropriate to demonstrate the safety of human ES cell-based therapies. However, the expression of the ERas gene has not been examined in nonhuman primate ES cells. In this study, we cloned the cynomolgus homologue and showed that the ERas gene is expressed in cynomolgus ES cells. Notably, it is also expressed in cynomolgus ES cell-derived differentiated progeny as well as cynomolgus adult tissues. The ERas protein is detectable in various cynomolgus tissues as assessed by immunohistochemisty. Cynomolgus ES cell-derived teratoma cells, which also expressed the ERas gene at higher levels than the undifferentiated cynomolgus ES cells, did not develop tumors in NOD/Shi- scid, IL-2Rγnull (NOG) mice. Even when the ERas gene was overexpressed in cynomolgus stromal cells, only the plating efficiency was improved and the proliferation was not promoted. Thus, it is unlikely that ERas contributes to the tumorigenicity of cynomolgus cells. Therefore, cynomolgus ES cells are more similar to human than mouse ES cells despite that ERas is expressed in cynomolgus and mouse ES cells but not in human ES cells.


2020 ◽  
Author(s):  
Irene M. Aspalter ◽  
Wolfram Pönisch ◽  
Kevin J. Chalut ◽  
Ewa K. Paluch

AbstractDevelopment relies on a series of precisely orchestrated cell fate changes. While studies of fate transitions often focus on changes in gene regulatory networks, most transitions are also associated with changes in cell shape and cell behaviour. Here, we investigate changes in migratory behaviour in mouse embryonic stem (ES) cells during their first developmental fate transition, exit from ES cell state. We show that naïve pluripotent ES cells cannot efficiently migrate on 2-dimensional substrates but are able to migrate in an amoeboid fashion when placed in confinement. Exit from ES cell state, typically characterised by enhanced cell spreading, is associated with decreased migration in confinement and acquisition of mesenchymal-like migration on 2D substrates. Interestingly, confined, amoeboid-like migration of ES cells strongly depends on Myosin IIA, but not Myosin IIB. In contrast mesenchymal-like migration of cells exiting the ES cell state does not depend on Myosin motor activity but relies on the activity of the Arp2/3 complex. Together, our data suggest that during early differentiation, cells undergo a switch in the regulation of the actin cytoskeleton, leading to a transition from amoeboid-to mesenchymal-like migration.Summary statementNaïve mouse embryonic stem cells display amoeboid-like migration in confinement, but switch to mesenchymal-like migration as they exit the ES cell state.


Sign in / Sign up

Export Citation Format

Share Document