scholarly journals A Myosin IK-Abp1-PakB Circuit Acts as a Switch to Regulate Phagocytosis Efficiency

2010 ◽  
Vol 21 (9) ◽  
pp. 1505-1518 ◽  
Author(s):  
Régis Dieckmann ◽  
Yosuke von Heyden ◽  
Claudia Kistler ◽  
Navin Gopaldass ◽  
Stéphanie Hausherr ◽  
...  

Actin dynamics and myosin (Myo) contractile forces are necessary for formation and closure of the phagocytic cup. In Dictyostelium, the actin-binding protein Abp1 and myosin IK are enriched in the closing cup and especially at an actin-dense constriction furrow formed around the neck of engulfed budded yeasts. This phagocytic furrow consists of concentric overlapping rings of MyoK, Abp1, Arp3, coronin, and myosin II, following an order strikingly reminiscent of the overall organization of the lamellipodium of migrating cells. Mutation analyses of MyoK revealed that both a C-terminal farnesylation membrane anchor and a Gly-Pro-Arg domain that interacts with profilin and Abp1 were necessary for proper localization in the furrow and efficient phagocytosis. Consequently, we measured the binding affinities of these interactions and unraveled further interactions with profilins, dynamin A, and PakB. Due to the redundancy of the interaction network, we hypothesize that MyoK and Abp1 are restricted to regulatory roles and might affect the dynamic of cup progression. Indeed, phagocytic uptake was regulated antagonistically by MyoK and Abp1. MyoK is phosphorylated by PakB and positively regulates phagocytosis, whereas binding of Abp1 negatively regulates PakB and MyoK. We conclude that a MyoK-Abp1-PakB circuit acts as a switch regulating phagocytosis efficiency of large particles.

2012 ◽  
Vol 197 (7) ◽  
pp. 939-956 ◽  
Author(s):  
Qing Yang ◽  
Xiao-Feng Zhang ◽  
Thomas D. Pollard ◽  
Paul Forscher

The Arp2/3 complex nucleates actin filaments to generate networks at the leading edge of motile cells. Nonmuscle myosin II produces contractile forces involved in driving actin network translocation. We inhibited the Arp2/3 complex and/or myosin II with small molecules to investigate their respective functions in neuronal growth cone actin dynamics. Inhibition of the Arp2/3 complex with CK666 reduced barbed end actin assembly site density at the leading edge, disrupted actin veils, and resulted in veil retraction. Strikingly, retrograde actin flow rates increased with Arp2/3 complex inhibition; however, when myosin II activity was blocked, Arp2/3 complex inhibition now resulted in slowing of retrograde actin flow and veils no longer retracted. Retrograde flow rate increases induced by Arp2/3 complex inhibition were independent of Rho kinase activity. These results provide evidence that, although the Arp2/3 complex and myosin II are spatially segregated, actin networks assembled by the Arp2/3 complex can restrict myosin II–dependent contractility with consequent effects on growth cone motility.


2007 ◽  
Vol 18 (3) ◽  
pp. 827-838 ◽  
Author(s):  
Céline Revenu ◽  
Matthieu Courtois ◽  
Alphée Michelot ◽  
Cécile Sykes ◽  
Daniel Louvard ◽  
...  

Villin, an actin-binding protein associated with the actin bundles that support microvilli, bundles, caps, nucleates, and severs actin in a calcium-dependant manner in vitro. We hypothesized that the severing activity of villin is responsible for its reported role in enhancing cell plasticity and motility. To test this hypothesis, we chose a loss of function strategy and introduced mutations in villin based on sequence comparison with CapG. By pyrene-actin assays, we demonstrate that this mutant has a strongly reduced severing activity, whereas nucleation and capping remain unaffected. The bundling activity and the morphogenic effects of villin in cells are also preserved in this mutant. We thus succeeded in dissociating the severing from the three other activities of villin. The contribution of villin severing to actin dynamics is analyzed in vivo through the actin-based movement of the intracellular bacteria Shigella flexneri in cells expressing villin and its severing variant. The severing mutations abolish the gain of velocity induced by villin. To further analyze this effect, we reconstituted an in vitro actin-based bead movement in which the usual capping protein is replaced by either the wild type or the severing mutant of villin. Confirming the in vivo results, villin-severing activity enhances the velocity of beads by more than two-fold and reduces the density of actin in the comets. We propose a model in which, by severing actin filaments and capping their barbed ends, villin increases the concentration of actin monomers available for polymerization, a mechanism that might be paralleled in vivo when an enterocyte undergoes an epithelio-mesenchymal transition.


1984 ◽  
Vol 99 (3) ◽  
pp. 1024-1033 ◽  
Author(s):  
D P Kiehart ◽  
T D Pollard

Monoclonal and polyclonal antibodies that bind to myosin-II were tested for their ability to inhibit myosin ATPase activity, actomyosin ATPase activity, and contraction of cytoplasmic extracts. Numerous antibodies specifically inhibit the actin activated Mg++-ATPase activity of myosin-II in a dose-dependent fashion, but none blocked the ATPase activity of myosin alone. Control antibodies that do not bind to myosin-II and several specific antibodies that do bind have no effect on the actomyosin-II ATPase activity. In most cases, the saturation of a single antigenic site on the myosin-II heavy chain is sufficient for maximal inhibition of function. Numerous monoclonal antibodies also block the contraction of gelled extracts of Acanthamoeba cytoplasm. No polyclonal antibodies tested inhibited ATPase activity or gel contraction. As expected, most antibodies that block actin-activated ATPase activity also block gel contraction. Exceptions were three antibodies M2.2, -15, and -17, that appear to uncouple the ATPase activity from gel contraction: they block gel contraction without influencing ATPase activity. The mechanisms of inhibition of myosin function depends on the location of the antibody-binding sites. Those inhibitory antibodies that bind to the myosin-II heads presumably block actin binding or essential conformational changes in the myosin heads. A subset of the antibodies that bind to the proximal end of the myosin-II tail inhibit actomyosin-II ATPase activity and gel contraction. Although this part of the molecule is presumably some distance from the ATP and actin-binding sites, these antibody effects suggest that structural domains in this region are directly involved with or coupled to catalysis and energy transduction. A subset of the antibodies that bind to the tip of the myosin-II tail appear to inhibit ATPase activity and contraction through their inhibition of filament formation. They provide strong evidence for a substantial enhancement of the ATPase activity of myosin molecules in filamentous form and suggest that the myosin filaments may be required for cell motility.


2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Fei Xue ◽  
Deanna M. Janzen ◽  
David A. Knecht

Numerous F-actin containing structures are involved in regulating protrusion of membrane at the leading edge of motile cells. We have investigated the structure and dynamics of filopodia as they relate to events at the leading edge and the function of the trailing actin networks. We have found that although filopodia contain parallel bundles of actin, they contain a surprisingly nonuniform spatial and temporal distribution of actin binding proteins. Along the length of the actin filaments in a single filopodium, the most distal portion contains primarily T-plastin, while the proximal portion is primarily bound byα-actinin and coronin. Some filopodia are stationary, but lateral filopodia move with respect to the leading edge. They appear to form a mechanical link between the actin polymerization network at the front of the cell and the myosin motor activity in the cell body. The direction of lateral filopodial movement is associated with the direction of cell migration. When lateral filopodia initiate from and move toward only one side of a cell, the cell will turn opposite to the direction of filopodial flow. Therefore, this filopodia-myosin II system allows actin polymerization driven protrusion forces and myosin II mediated contractile force to be mechanically coordinated.


2005 ◽  
Vol 94 (12) ◽  
pp. 1203-1212 ◽  
Author(s):  
Doris Cerecedo ◽  
Dalila Martínez-Rojas ◽  
Oscar Chávez ◽  
Francisco Martínez-Pérez ◽  
Francisco García-Sierra ◽  
...  

SummaryPlatelets are dynamic cell fragments that modify their shape during activation. Utrophin and dystrophins are minor actin-binding proteins present in muscle and non-muscle cytoskeleton. In the present study, we characterised the pattern of Dp71 isoforms and utrophin gene products by immunoblot in human platelets. Two new dystrophin isoforms were found, Dp71f and Dp71d, as well as the Up71 isoform and the dystrophin-associated proteins, α and β-dystrobrevins. Distribution of Dp71d/Dp71Δ110 m, Up400/Up71 and dystrophin-associated proteins in relation to the actin cytoskeleton was evaluated by confocal microscopy in both resting and platelets adhered on glass. Formation of two dystrophin-associated protein complexes (Dp71d/Dp71Δ110 m ~DAPC and Up400/Up71~DAPC) was demonstrated by co-immunoprecipitation and their distribution in relation to the actin cytoskeleton was characterised during platelet adhesion. The Dp71d/Dp71Δ110 m ~DAPC is maintained mainly at the granulomere and is associated with dynamic structures during activation by adhesion to thrombin-coated surfaces. Participation of both Dp71d/Dp71Δ110 m ~DAPC and Up400/Up71~DAPC in the biological roles of the platelets is discussed.


2021 ◽  
Author(s):  
Hanqing Guo ◽  
Michael Swan ◽  
Shicheng Huang ◽  
Bing He

Apical constriction driven by non-muscle myosin II (″myosin″) provides a well-conserved mechanism to mediate epithelial folding. It remains unclear how contractile forces near the apical surface of a cell sheet drive out-of-plane bending of the sheet and whether myosin contractility is required throughout folding. By optogenetic-mediated acute inhibition of myosin, we find that during Drosophila mesoderm invagination, myosin contractility is critical to prevent tissue relaxation during the early, ″priming″ stage of folding but is dispensable for the actual folding step after the tissue passes through a stereotyped transitional configuration, suggesting that the mesoderm is mechanically bistable during gastrulation. Combining computer modeling and experimental measurements, we show that the observed mechanical bistability arises from an in-plane compression from the surrounding ectoderm, which promotes mesoderm invagination by facilitating a buckling transition. Our results indicate that Drosophila mesoderm invagination requires a joint action of local apical constriction and global in-plane compression to trigger epithelial buckling.


2002 ◽  
Vol 52 (1) ◽  
pp. 9-21 ◽  
Author(s):  
D. Vardar ◽  
A. H. Chishti ◽  
B. S. Frank ◽  
E. J. Luna ◽  
A. A. Noegel ◽  
...  

2002 ◽  
Vol 13 (11) ◽  
pp. 3811-3821 ◽  
Author(s):  
Pauli J. Ojala ◽  
Ville O. Paavilainen ◽  
Maria K. Vartiainen ◽  
Roman Tuma ◽  
Alan G. Weeds ◽  
...  

Twinfilin is a ubiquitous and abundant actin monomer–binding protein that is composed of two ADF-H domains. To elucidate the role of twinfilin in actin dynamics, we examined the interactions of mouse twinfilin and its isolated ADF-H domains with G-actin. Wild-type twinfilin binds ADP-G-actin with higher affinity (K D = 0.05 μM) than ATP-G-actin (K D = 0.47 μM) under physiological ionic conditions and forms a relatively stable (k off = 1.8 s−1) complex with ADP-G-actin. Data from native PAGE and size exclusion chromatography coupled with light scattering suggest that twinfilin competes with ADF/cofilin for the high-affinity binding site on actin monomers, although at higher concentrations, twinfilin, cofilin, and actin may also form a ternary complex. By systematic deletion analysis, we show that the actin-binding activity is located entirely in the two ADF-H domains of twinfilin. Individually, these domains compete for the same binding site on actin, but the C-terminal ADF-H domain, which has >10-fold higher affinity for ADP-G-actin, is almost entirely responsible for the ability of twinfilin to increase the amount of monomeric actin in cosedimentation assays. Isolated ADF-H domains associate with ADP-G-actin with rapid second-order kinetics, whereas the association of wild-type twinfilin with G-actin exhibits kinetics consistent with a two-step binding process. These data suggest that the association with an actin monomer induces a first-order conformational change within the twinfilin molecule. On the basis of these results, we propose a kinetic model for the role of twinfilin in actin dynamics and its possible function in cells.


Blood ◽  
2022 ◽  
Author(s):  
Evelien G.G. Sprenkeler ◽  
Anton T.J. Tool ◽  
Stefanie Henriet ◽  
Robin van Bruggen ◽  
Taco W. Kuijpers

Neutrophils are important effector cells in the host defense against invading micro-organisms. One of the mechanisms they employ to eliminate pathogens is the release of neutrophil extracellular traps (NETs). Although NET release and subsequent cell death known as NETosis have been intensively studied, the cellular components and factors determining or facilitating the formation of NETs remain incompletely understood. Using various actin polymerization and myosin II modulators on neutrophils from healthy individuals, we show that intact F-actin dynamics and myosin II function are essential for NET formation when induced by different stimuli, i.e. phorbol 12-myristate 13-acetate, monosodium urate crystals and Candida albicans. The role of actin polymerization in NET formation could not be explained by the lack of reactive oxygen species production or granule release, which were normal or enhanced under the given conditions. Neutrophils from patients with very rare inherited actin polymerization defects by either ARPC1B- or MKL1-deficiency also failed to show NETosis. We found that upon inhibition of actin dynamics there is a lack of translocation of NE to the nucleus, which may well explain the impaired NET formation. Collectively, our data illustrate the essential requirement of an intact and active actin polymerization process, as well as active myosin II to enable the release of nuclear DNA by neutrophils during NET formation.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Elisa Savino ◽  
Romina Inès Cervigni ◽  
Miriana Povolo ◽  
Alessandra Stefanetti ◽  
Daniele Ferrante ◽  
...  

Abstract Mutations in proline-rich transmembrane protein 2 (PRRT2) have been recently identified as the leading cause of a clinically heterogeneous group of neurological disorders sharing a paroxysmal nature, including paroxysmal kinesigenic dyskinesia and benign familial infantile seizures. To date, studies aimed at understanding its physiological functions in neurons have mainly focused on its ability to regulate neurotransmitter release and neuronal excitability. Here, we show that PRRT2 expression in non-neuronal cell lines inhibits cell motility and focal adhesion turnover, increases cell aggregation propensity, and promotes the protrusion of filopodia, all processes impinging on the actin cytoskeleton. In primary hippocampal neurons, PRRT2 silencing affects the synaptic content of filamentous actin and perturbs actin dynamics. This is accompanied by defects in the density and maturation of dendritic spines. We identified cofilin, an actin-binding protein abundantly expressed at the synaptic level, as the ultimate effector of PRRT2. Indeed, PRRT2 silencing unbalances cofilin activity leading to the formation of cofilin-actin rods along neurites. The expression of a cofilin phospho-mimetic mutant (cof-S3E) is able to rescue PRRT2-dependent defects in synapse density, spine number and morphology, but not the alterations observed in neurotransmitter release. Our data support a novel function of PRRT2 in the regulation of the synaptic actin cytoskeleton and in the formation of synaptic contacts.


Sign in / Sign up

Export Citation Format

Share Document