scholarly journals Arid5a cooperates with Sox9 to stimulate chondrocyte-specific transcription

2011 ◽  
Vol 22 (8) ◽  
pp. 1300-1311 ◽  
Author(s):  
Katsuhiko Amano ◽  
Kenji Hata ◽  
Shuji Muramatsu ◽  
Makoto Wakabayashi ◽  
Yoko Takigawa ◽  
...  

SRY-box–containing gene 9 (Sox9) is an essential transcription factor in chondrocyte lineage determination and differentiation. Recent studies demonstrated that Sox9 controls the transcription of chondrocyte-specific genes in association with several other transcriptional regulators. To further understand the molecular mechanisms by which Sox9 influences transcriptional events during chondrocyte differentiation, we attempted to identify transcriptional partners of Sox9 and to examine their roles in chondrocyte differentiation. We isolated AT-rich interactive domain–containing protein 5a (Arid5a; also known as Mrf1) as an activator of the Col2a1 gene promoter from an ATDC5 cDNA library. Arid5a was highly expressed in cartilage and induced during chondrocyte differentiation. Furthermore, Arid5a physically interacted with Sox9 in nuclei and up-regulated the chondrocyte-specific action of Sox9. Overexpression of Arid5a stimulated chondrocyte differentiation in vitro and in an organ culture system. In contrast, Arid5a knockdown inhibited Col2a1 expression in chondrocytes. In addition, Arid5a binds directly to the promoter region of the Col2a1 gene and stimulates acetylation of histone 3 in the region. Our results suggest that Arid5a may directly interact with Sox9 and thereby enhance its chondrocyte-specific action.

2001 ◽  
Vol 169 (3) ◽  
pp. 573-579 ◽  
Author(s):  
I Sekiya ◽  
P Koopman ◽  
K Tsuji ◽  
S Mertin ◽  
V Harley ◽  
...  

SOX9 is a transcription factor that activates type II procollagen (Col2a1) gene expression during chondrocyte differentiation. Glucocorticoids are also known to promote chondrocyte differentiation via unknown molecular mechanisms. We therefore investigated the effects of a synthetic glucocorticoid, dexamethasone (DEX), on Sox9 gene expression in chondrocytes prepared from rib cartilage of newborn mice. Sox9 mRNA was expressed at high levels in these chondrocytes. Treatment with DEX enhanced Sox9 mRNA expression within 24 h and this effect was observed at least up to 48 h. The effect of DEX was dose dependent, starting at 0.1 nM and maximal at 10 nM. The half life of Sox9 mRNA was approximately 45 min in the presence or absence of DEX. Western blot analysis revealed that DEX also enhanced the levels of SOX9 protein expression. Treatment with DEX enhanced Col2a1 mRNA expression in these chondrocytes and furthermore, DEX enhanced the activity of Col2-CAT (chloramphenicol acetyltransferase) construct containing a 1.6 kb intron fragment where chondrocyte-specific Sry/Sox- consensus sequence is located. The enhancing effect of DEX was specific to SOX9, as DEX did not alter the levels of Sox6 mRNA expression. These data suggest that DEX promotes chondrocyte differentiation through enhancement of SOX9.


2010 ◽  
Vol 189 (2) ◽  
pp. 325-338 ◽  
Author(s):  
Kohei Yamamizu ◽  
Taichi Matsunaga ◽  
Hideki Uosaki ◽  
Hiroyuki Fukushima ◽  
Shiori Katayama ◽  
...  

Molecular mechanisms controlling arterial–venous specification have not been fully elucidated. Previously, we established an embryonic stem cell differentiation system and demonstrated that activation of cAMP signaling together with VEGF induces arterial endothelial cells (ECs) from Flk1+ vascular progenitor cells. Here, we show novel arterial specification machinery regulated by Notch and β-catenin signaling. Notch and GSK3β-mediated β-catenin signaling were activated downstream of cAMP through phosphatidylinositol-3 kinase. Forced activation of Notch and β-catenin with VEGF completely reconstituted cAMP-elicited arterial EC induction, and synergistically enhanced target gene promoter activity in vitro and arterial gene expression during in vivo angiogenesis. A protein complex with RBP-J, the intracellular domain of Notch, and β-catenin was formed on RBP-J binding sites of arterial genes in arterial, but not venous ECs. This molecular machinery for arterial specification leads to an integrated and more comprehensive understanding of vascular signaling.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Feng Li ◽  
Tingting Lu ◽  
Dongmei Liu ◽  
Chong Zhang ◽  
Yonghui Zhang ◽  
...  

AbstractProstate cancer (PCA) is one of the most common male genitourinary tumors. However, the molecular mechanisms involved in the occurrence and progression of PCA have not been fully clarified. The present study aimed to investigate the biological function and molecular mechanism of the nuclear receptor peroxisome proliferator-activated receptor gamma 2 (PPARG2) in PCA. Our results revealed that PPARG2 was downregulated in PCA, and overexpression of PPARG2 inhibited cell migration, colony formation, invasion and induced cell cycle arrest of PCA cells in vitro. In addition, PPARG2 overexpression modulated the activation of the Akt signaling pathway, as well as inhibited tumor growth in vivo. Moreover, mechanistic analysis revealed that PPARG2 overexpression induced increased expression level of miR-200b-3p, which targeted 3′ UTR of the downstream targets DNMT3A/3B, and facilitated interaction with demethylated AKAP12 gene promoter and suppressed cell proliferation in PCA. Our findings provided the first evidence for a novel PPARG2-AKAP12 axis mediated epigenetic regulatory network. The study identified a molecular mechanism involving an epigenetic modification that could be possibly targeted as an antitumoral strategy against prostate cancer.


2014 ◽  
Vol 27 (10) ◽  
pp. 1035-1047 ◽  
Author(s):  
Alon Savidor ◽  
Laura Chalupowicz ◽  
Doron Teper ◽  
Karl-Heinz Gartemann ◽  
Rudolf Eichenlaub ◽  
...  

The plant pathogen Clavibacter michiganensis subsp. michiganensis is a gram-positive bacterium responsible for wilt and canker disease of tomato. Although disease development is well characterized and diagnosed, molecular mechanisms of C. michiganensis subsp. michiganensis virulence are poorly understood. Here, we identified and characterized two C. michiganensis subsp. michiganensis transcriptional regulators, Vatr1 and Vatr2, that are involved in pathogenicity of C. michiganensis subsp. michiganensis. Vatr1 and Vatr2 belong to TetR and MocR families of transcriptional regulators, respectively. Mutations in their corresponding genes caused attenuated virulence, with the Δvatr2 mutant showing a more dramatic effect than Δvatr1. Although both mutants grew well in vitro and reached a high titer in planta, they caused reduced wilting and canker development in infected plants compared with the wild-type bacterium. They also led to a reduced expression of the ethylene-synthesizing tomato enzyme ACC-oxidase compared with wild-type C. michiganensis subsp. michiganensis and to reduced ethylene production in the plant. Transcriptomic analysis of wild-type C. michiganensis subsp. michiganensis and the two mutants under infection-mimicking conditions revealed that Vatr1 and Vatr2 regulate expression of virulence factors, membrane and secreted proteins, and signal-transducing proteins. A 70% overlap between the sets of genes positively regulated by Vatr1 and Vatr2 suggests that these transcriptional regulators are on the same molecular pathway responsible for C. michiganensis subsp. michiganensis virulence.


Author(s):  
D. P. Bazett-Jones ◽  
M. J. Hendzel

Structural analysis of combinations of nucleosomes and transcription factors on promoter and enhancer elements is necessary in order to understand the molecular mechanisms responsible for the regulation of transcription initiation. Such complexes are often not amenable to study by high resolution crystallographic techniques. We have been applying electron spectroscopic imaging (ESI) to specific problems in molecular biology related to transcription regulation. There are several advantages that this technique offers in studies of nucleoprotein complexes. First, an intermediate level of spatial resolution can be achieved because heavy atom contrast agents are not necessary. Second, mass and stoichiometric relationships of protein and nucleic acid can be estimated by phosphorus detection, an element in much higher proportions in nucleic acid than protein. Third, wrapping or bending of the DNA by the protein constituents can be observed by phosphorus mapping of the complexes. Even when ESI is used with high exposure of electrons to the specimen, important macromolecular information may be provided. For example, an image of the TATA binding protein (TBP) bound to DNA is shown in the Figure (top panel). It can be seen that the protein distorts the DNA away from itself and much of its mass sits off the DNA helix axis. Moreover, phosphorus and mass estimates demonstrate whether one or two TBP molecules interact with this particular promoter TATA sequence.


2019 ◽  
Vol XIV (1) ◽  
Author(s):  
R.E. Kalinin ◽  
I.A. Suchkov ◽  
N.V. Korotkova ◽  
N.D. Mzhavanadze

2020 ◽  
Vol 11 (SPL1) ◽  
pp. 1278-1285
Author(s):  
Mohamed Yafout ◽  
Amine Ousaid ◽  
Ibrahim Sbai El Otmani ◽  
Youssef Khayati ◽  
Amal Ait Haj Said

The new SARS-CoV-2 belonging to the coronaviruses family has caused a pandemic affecting millions of people around the world. This pandemic has been declared by the World Health Organization as an international public health emergency. Although several clinical trials involving a large number of drugs are currently underway, no treatment protocol for COVID-19 has been officially approved so far. Here we demonstrate through a search in the scientific literature that the traditional Moroccan pharmacopoeia, which includes more than 500 medicinal plants, is a fascinating and promising source for the research of natural molecules active against SARS-CoV-2. Multiple in-silico and in-vitro studies showed that some of the medicinal plants used by Moroccans for centuries possess inhibitory activity against SARS-CoV or SARS-CoV-2. These inhibitory activities are achieved through the different molecular mechanisms of virus penetration and replication, or indirectly through stimulation of immunity. Thus, the potential of plants, plant extracts and molecules derived from plants that are traditionally used in Morocco and have activity against SARS-CoV-2, could be explored in the search for a preventive or curative treatment against COVID-19. Furthermore, safe plants or plant extracts that are proven to stimulate immunity could be officially recommended by governments as nutritional supplements.


2012 ◽  
Vol 2 (1) ◽  
pp. 1 ◽  
Author(s):  
Hidekatsu Yanai ◽  
Hiroshi Yoshida ◽  
Yuji Hirowatari ◽  
Norio Tada

Characteristics for the serum lipid abnormalities in the obesity/metabolic syndrome are elevated fasting, postprandial triglyceride (TG), and decreased high-density lipoprotein-cholesterol (HDL-C). Diacylglycerol (DAG) oil ingestion has been reported to ameliorate postprandial hyperlipidemia and prevent obesity by increasing energy expenditure, due to the intestinal physiochemical dynamics that differ from triacylglycerol (TAG). Our study demonstrated that DAG suppresses postprandial increase in TG-rich lipoprotein, very low-density lipoprotein (VLDL), and insulin, as compared with TAG in young, healthy individuals. Interestingly, our study also presented that DAG significantly increases plasma serotonin, which is mostly present in the intestine, and mediates thermogenesis, proposing a possible mechanism for a postprandial increase in energy expenditure by DAG. Our other study demonstrated that DAG suppresses postprandial increase in TG, VLDL-C, and remnant-like particle-cholesterol, in comparison with TAG in an apolipoprotein C-II deficient subject, suggesting that DAG suppresses postprandial TG-rich lipoprotein independently of lipoprotein lipase. Further, to understand the molecular mechanisms for DAG-mediated increase in serotonin and energy expenditure, we studied the effects of 1-monoacylglycerol and 2-monoacylglycerol, distinct digestive products of DAG and TAG, respectively, on serotonin release from the Caco-2 cells, the human intestinal cell line. We also studied effects of 1- and 2-monoacylglycerol, and serotonin on the expression of mRNA associated with β-oxidation, fatty acids metabolism, and thermogenesis, in the Caco-2 cells. 1-monoacylglycerol significantly increased serotonin release from the Caco-2 cells, compared with 2-monoacylglycerol by approximately 40%. The expression of mRNA of acyl-CoA oxidase (ACO), fatty acid translocase (FAT), and uncoupling protein-2 (UCP-2), was significantly higher in 1-MOG-treated Caco-2 cells, than 2-MOG-treated cells. The expression of mRNA of ACO, medium-chain acyl-CoA dehydrogenase, FAT, and UCP-2, was significantly elevated in serotonin-treated Caco-2 cells, compared to cells incubated without serotonin. In conclusion, our clinical and in vitro studies suggested a possible therapeutic application of DAG for obesity, and obesity-related metabolic disorders.Key words: Diacylglycerol, intestine, obesity, serotonin, thermogenesis


2019 ◽  
Vol 26 (25) ◽  
pp. 4799-4831 ◽  
Author(s):  
Jiahua Cui ◽  
Xiaoyang Liu ◽  
Larry M.C. Chow

P-glycoprotein, also known as ABCB1 in the ABC transporter family, confers the simultaneous resistance of metastatic cancer cells towards various anticancer drugs with different targets and diverse chemical structures. The exploration of safe and specific inhibitors of this pump has always been the pursuit of scientists for the past four decades. Naturally occurring flavonoids as benzopyrone derivatives were recognized as a class of nontoxic inhibitors of P-gp. The recent advent of synthetic flavonoid dimer FD18, as a potent P-gp modulator in reversing multidrug resistance both in vitro and in vivo, specifically targeted the pseudodimeric structure of the drug transporter and represented a new generation of inhibitors with high transporter binding affinity and low toxicity. This review concerned the recent updates on the structure-activity relationships of flavonoids as P-gp inhibitors, the molecular mechanisms of their action and their ability to overcome P-gp-mediated MDR in preclinical studies. It had crucial implications on the discovery of new drug candidates that modulated the efflux of ABC transporters and also provided some clues for the future development in this promising area.


2018 ◽  
Vol 15 (4) ◽  
pp. 345-354 ◽  
Author(s):  
Barbara D'Orio ◽  
Anna Fracassi ◽  
Maria Paola Cerù ◽  
Sandra Moreno

Background: The molecular mechanisms underlying Alzheimer's disease (AD) are yet to be fully elucidated. The so-called “amyloid cascade hypothesis” has long been the prevailing paradigm for causation of disease, and is today being revisited in relation to other pathogenic pathways, such as oxidative stress, neuroinflammation and energy dysmetabolism. The peroxisome proliferator-activated receptors (PPARs) are expressed in the central nervous system (CNS) and regulate many physiological processes, such as energy metabolism, neurotransmission, redox homeostasis, autophagy and cell cycle. Among the three isotypes (α, β/δ, γ), PPARγ role is the most extensively studied, while information on α and β/δ are still scanty. However, recent in vitro and in vivo evidence point to PPARα as a promising therapeutic target in AD. Conclusion: This review provides an update on this topic, focussing on the effects of natural or synthetic agonists in modulating pathogenetic mechanisms at AD onset and during its progression. Ligandactivated PPARα inihibits amyloidogenic pathway, Tau hyperphosphorylation and neuroinflammation. Concomitantly, the receptor elicits an enzymatic antioxidant response to oxidative stress, ameliorates glucose and lipid dysmetabolism, and stimulates autophagy.


Sign in / Sign up

Export Citation Format

Share Document