scholarly journals hemingway is required for sperm flagella assembly and ciliary motility in Drosophila

2014 ◽  
Vol 25 (8) ◽  
pp. 1276-1286 ◽  
Author(s):  
Fabien Soulavie ◽  
David Piepenbrock ◽  
Joëlle Thomas ◽  
Jennifer Vieillard ◽  
Jean-Luc Duteyrat ◽  
...  

Cilia play major functions in physiology and development, and ciliary dysfunctions are responsible for several diseases in humans called ciliopathies. Cilia motility is required for cell and fluid propulsion in organisms. In humans, cilia motility deficiencies lead to primary ciliary dyskinesia, with upper-airways recurrent infections, left–right asymmetry perturbations, and fertility defects. In Drosophila, we identified hemingway (hmw) as a novel component required for motile cilia function. hmw encodes a 604–amino acid protein characterized by a highly conserved coiled-coil domain also found in the human orthologue, KIAA1430. We show that HMW is conserved in species with motile cilia and that, in Drosophila, hmw is expressed in ciliated sensory neurons and spermatozoa. We created hmw-knockout flies and found that they are hearing impaired and male sterile. hmw is implicated in the motility of ciliated auditory sensory neurons and, in the testis, is required for elongation and maintenance of sperm flagella. Because HMW is absent from mature flagella, we propose that HMW is not a structural component of the motile axoneme but is required for proper acquisition of motile properties. This identifies HMW as a novel, evolutionarily conserved component necessary for motile cilium function and flagella assembly.

2018 ◽  
Author(s):  
Thomas Juan ◽  
Charles Géminard ◽  
Jean-Baptiste Coutelis ◽  
Delphine Cerezo ◽  
Sophie Polès ◽  
...  

The establishment of Left/Right (LR) asymmetry is fundamental to animal development. While the pathways governing antero-posterior and dorso-ventral patterning are well conserved among different phyla, divergent mechanisms have been implicated in the specification of LR asymmetry in vertebrates and invertebrates. A cilia-driven, directional fluid flow is important for symmetry breaking in numerous vertebrates, including zebrafish1–10. Alternatively, LR asymmetry can be established independently of motile cilia, notably through the intrinsic chirality of the acto-myosin cytoskeleton11–18. Here we show that MyosiniD (Myo1D), which has been previously identified as a key determinant of LR asymmetry in Drosophila12,13, is essential for the formation and the function of the zebrafish LR Organizer (LRO). We show that Myo1D controls the polarity of LRO cilia and interacts functionally with the Planar Cell Polarity (PCP) gene VanGogh-like2 (Vangl2)19, to promote the establishment of a functional LRO flow. Our findings identify Myo1D as the first evolutionarily conserved determinant of LR asymmetry, and show that functional interactions between Myo1D and PCP are central to the establishment of animal LR asymmetry.


2004 ◽  
Vol 24 (9) ◽  
pp. 3957-3971 ◽  
Author(s):  
Margret B. Einarson ◽  
Edna Cukierman ◽  
Duane A. Compton ◽  
Erica A. Golemis

ABSTRACT In a cross-species overexpression approach, we used the pseudohyphal transition of Saccharomyces cerevisiae as a model screening system to identify human genes that regulate cell morphology and the cell cycle. Human enhancer of invasion-cluster (HEI-C), encoding a novel evolutionarily conserved coiled-coil protein, was isolated in a screen for human genes that induce agar invasion in S. cerevisiae. In human cells, HEI-C is primarily localized to the spindle during mitosis. Depletion of HEI-C in vivo with short interfering RNAs results in severe mitotic defects. Analysis by immunofluorescence, flow cytometry analysis, and videomicroscopy indicates that HEI-C-depleted cells form metaphase plates with normal timing after G2/M transition, although in many cases cells have disorganized mitotic spindles. Subsequently, severe defects occur at the metaphase-anaphase transition, characterized by a significant delay at this stage or, more commonly, cellular disintegration accompanied by the display of classic biochemical markers of apoptosis. These mitotic defects occur in spite of the fact that HEI-C-depleted cells retain functional cell cycle checkpoints, as these cells arrest normally following nocodazole or hydroxyurea treatment. These results place HEI-C as a novel regulator of spindle function and integrity during the metaphase-anaphase transition.


1999 ◽  
Vol 112 (24) ◽  
pp. 4687-4694 ◽  
Author(s):  
V. Dilbeck ◽  
M. Berberof ◽  
A. Van Cauwenberge ◽  
H. Alexandre ◽  
E. Pays

TBBC (for Trypanosoma brucei basal body component) is a unique gene transcribed in a 4.8 kb mRNA encoding a 1,410 amino acid protein that consists almost entirely of a coiled coil structure. This protein appeared to localize in the basal body, with an accessory presence at the posterior end of the cell, the nucleus and over the flagellum. Since the two other known components of the trypanosome basal body are (gamma)-tubulin and an uncharacterized component termed BBA4 we performed double immunofluorescence experiments with anti-TBBC and either anti-BBA4 or anti-(gamma)-tubulin antibodies. These three components did not colocalize but were very closely associated, BBA4 being the most proximal to the kinetoplast DNA. Anti-TBBC antibodies detected a 170 kDa protein in western blots of total HeLa cell extracts. Moreover, these antibodies stained the centriole of HeLa and COS cells as well as the centriole of mouse spermatozoa, indicating that a TBBC-like centriolar component has been conserved during the evolution of eukaryotes.


Blood ◽  
2000 ◽  
Vol 95 (4) ◽  
pp. 1435-1442 ◽  
Author(s):  
Edward M. Conway ◽  
Saskia Pollefeyt ◽  
Jan Cornelissen ◽  
Inky DeBaere ◽  
Marta Steiner-Mosonyi ◽  
...  

Survivin is a member of the inhibitor of apoptosis protein (IAP) family that is believed to play a role in oncogenesis. To elucidate further its physiologic role(s), we have characterized the murinesurvivin gene and complementary DNA (cDNA). The structural organization of the survivin gene, located on chromosome 11E2, is similar to that of its human counterpart, both containing 4 exons. Surprisingly, 3 full-length murine survivin cDNA clones were isolated, predicting the existence of 3 distinct survivin proteins. The longest open reading frame, derived from all 4 exons, predicts a 140-amino acid residue protein, survivin140, similar to human survivin, which contains a single IAP repeat and a COOH-terminal coiled-coil domain that links its function to the cell cycle. A second cDNA, which retains intron 3, predicts the existence of a 121-amino acid protein, survivin121 that lacks the coiled-coil domain. Removal of exon 2-derived sequences by alternative pre-messenger RNA (mRNA) splicing results in a third 40-amino acid residue protein, survivin40, lacking the IAP repeat and coiled-coil structure. Predictably, only recombinant survivin140 and survivin121 inhibited caspase-3 activity. All 3 mRNA species were variably expressed during development from 7.5 days postcoitum. Of the adult tissues surveyed, thymus and testis accumulated high levels of survivin140 mRNA, whereas survivin121-specific transcripts were detected in all tissues, while those representing survivin40 were absent. Human counterparts to the 3 survivin mRNA transcripts were identified in a study of human cells and tissues. The presence of distinct isoforms of survivin that are expressed differentially suggests that survivin plays a complex role in regulating apoptosis.


2007 ◽  
Vol 81 (8) ◽  
pp. 4264-4271 ◽  
Author(s):  
Mark A. Yondola ◽  
Patrick Hearing

ABSTRACT One of the most interesting functions attributed to the adenovirus early region 4 open reading frame 3 (E4 ORF3) protein is its reorganization of promyelocytic leukemia (PML) protein nuclear bodies. These normally punctate structures are reorganized by E4 ORF3 into tracks that eventually surround viral replication centers. PML rearrangement is an evolutionarily conserved function of E4 ORF3, yet its cause and functional relevance remain mysteries. The E4 ORF3 protein coimmunoprecipitates with the PML protein, yet E4 ORF3 still forms tracks in cells that lack PML. The PML protein is a member of a larger protein family termed tripartite motif (TRIM) proteins. TRIM proteins contain a tripartite domain structure in proximity to their N termini that consists of a RING finger domain, followed by one or two B box domains and a C-terminal coiled-coil domain (collectively termed the RBCC domain). The order and spacing of these domains are evolutionarily conserved and thought to mediate protein-protein interactions and other functions. We implemented a proteomic approach to isolate cellular proteins that bind to E4 ORF3. We identified a novel interaction between E4 ORF3 and another TRIM family member, transcriptional intermediary factor 1 alpha (TIF1α). TIF1α functions by recruiting coactivators and/or corepressors to modulate transcription. The interaction between E4 ORF3 and TIF1α was validated by coimmunoprecipitation and binding of recombinant proteins. Indirect immunofluorescence assays demonstrated that TIF1α is reorganized into track structures that contain PML upon E4 ORF3 expression. The RBCC domain of TIF1α is sufficient for E4 ORF3-induced rearrangement, and TIF1α reorganization is conserved across adenovirus serotypes.


2003 ◽  
Vol 14 (1) ◽  
pp. 262-273 ◽  
Author(s):  
Masami Nagahama ◽  
Mie Suzuki ◽  
Yuko Hamada ◽  
Kiyotaka Hatsuzawa ◽  
Katsuko Tani ◽  
...  

VCP/p97 is involved in a variety of cellular processes, including membrane fusion and ubiquitin-dependent protein degradation. It has been suggested that adaptor proteins such as p47 and Ufd1p confer functional versatility to VCP/p97. To identify novel adaptors, we searched for proteins that interact specifically with VCP/p97 by using the yeast two-hybrid system, and discovered a novel VCP/p97-interacting protein named smallVCP/p97-interactingprotein (SVIP). Rat SVIP is a 76-amino acid protein that contains two putative coiled-coil regions, and potential myristoylation and palmitoylation sites at the N terminus. Binding experiments revealed that the N-terminal coiled-coil region of SVIP, and the N-terminal and subsequent ATP-binding regions (ND1 domain) of VCP/p97, interact with each other. SVIP and previously identified adaptors p47 and ufd1p interact with VCP/p97 in a mutually exclusive manner. Overexpression of full-length SVIP or a truncated mutant did not markedly affect the structure of the Golgi apparatus, but caused extensive cell vacuolation reminiscent of that seen upon the expression of VCP/p97 mutants or polyglutamine proteins in neuronal cells. The vacuoles seemed to be derived from endoplasmic reticulum membranes. These results together suggest that SVIP is a novelVCP/p97 adaptor whose function is related to the integrity of the endoplasmic reticulum.


2020 ◽  
Author(s):  
Georgina C. Gavins ◽  
Katharina Gröger ◽  
Michael D. Bartoschek ◽  
Philipp Wolf ◽  
Annette G. Beck-Sickinger ◽  
...  

AbstractDNA nanotechnology is an emerging field, which promises fascinating opportunities for the manipulation and imaging of proteins on a cell surface. The key to progress in the area is the ability to create the nucleic acid-protein junction in the context of living cells. Here we report a covalent labelling reaction, which installs a biostable peptide nucleic acid (PNA) tag. The reaction proceeds within minutes and is specific for proteins carrying a 2 kDa coiled coil peptide tag. Once installed the PNA label serves as a generic landing platform that enables the recruitment of fluorescent dyes via nucleic acid hybridization. We demonstrate the versatility of this approach by recruiting different fluorophores, assembling multiple fluorophores for increased brightness, and achieving reversible labelling by way of toehold mediated strand displacement. Additionally, we show that labelling can be carried out using two different coiled coil systems, with EGFR and ETBR, on both HEK293 and CHO cells. Finally, we apply the method to monitor internalization of EGFR on CHO cells.


Sign in / Sign up

Export Citation Format

Share Document