scholarly journals FUS is sequestered in nuclear aggregates in ALS patient fibroblasts

2014 ◽  
Vol 25 (17) ◽  
pp. 2571-2578 ◽  
Author(s):  
Jacob C. Schwartz ◽  
Elaine R. Podell ◽  
Steve S. W. Han ◽  
James D. Berry ◽  
Kevin C. Eggan ◽  
...  

Mutations in the RNA-binding protein FUS have been shown to cause the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We investigate whether mutant FUS protein in ALS patient–derived fibroblasts affects normal FUS functions in the nucleus. We investigated fibroblasts from two ALS patients possessing different FUS mutations and a normal control. Fibroblasts from these patients have their nuclear FUS protein trapped in SDS-resistant aggregates. Genome-wide analysis reveals an inappropriate accumulation of Ser-2 phosphorylation on RNA polymerase II (RNA Pol II) near the transcription start sites of 625 genes for ALS patient cells and after small interfering RNA (siRNA) knockdown of FUS in normal fibroblasts. Furthermore, both the presence of mutant FUS protein and siRNA knockdown of wild-type FUS correlate with altered distribution of RNA Pol II within fibroblast nuclei. A loss of FUS function in orchestrating Ser-2 phosphorylation of the CTD of RNA Pol II is detectable in ALS patient–derived fibroblasts expressing mutant FUS protein, even when the FUS protein remains largely nuclear. A likely explanation for this loss of function is the aggregation of FUS protein in nuclei. Thus our results suggest a specific mechanism by which mutant FUS can have biological consequences other than by the formation of cytoplasmic aggregates.

1995 ◽  
Vol 15 (8) ◽  
pp. 4562-4571 ◽  
Author(s):  
D Immanuel ◽  
H Zinszner ◽  
D Ron

Many oncogenes associated with human sarcomas are composed of a fusion between transcription factors and the N-terminal portions of two similar RNA-binding proteins, TLS and EWS. Though the oncogenic fusion proteins lack the RNA-binding domain and do not bind RNA, the contribution from the N-terminal portion of the RNA-binding protein is essential for their transforming activity. TLS and EWS associate in vivo with RNA polymerase II (Pol II) transcripts. To learn more about the target gene specificity of this interaction, the localization of a Drosophila melanogaster protein that has extensive sequence identity to the C-terminal RNA-binding portions of TLS and EWS was studied in preparations of Drosophila polytene nuclei. cDNA clones encoding the full-length Drosophila TLS-EWS homolog, SARFH (stands for sarcoma-associated RNA-binding fly homolog), were isolated. Functional similarity to TLS and EWS was revealed by the association of SARFH with Pol II transcripts in mammalian cells and by the ability of SARFH to elicit homologous down-regulation of the levels of the mammalian proteins. The SARFH gene is expressed in the developing Drosophila embryo from the earliest stages of cellularization and is subsequently found in many cell types. In preparations of polytene chromosomes from salivary gland nuclei, SARFH antibodies recognize their target associated with the majority of active transcription units, revealed by colocalization with the phosphorylated form of RNA Pol II. We conclude that SARFH and, by homology, EWS and TLS participate in a function common to the expression of most genes transcribed by RNA Pol II.


2020 ◽  
Author(s):  
A.I. Garrido-Godino ◽  
I. Gupta ◽  
F. Gutiérrez-Santiago ◽  
A.B. Martínez-Padilla ◽  
A. Alekseenko ◽  
...  

ABSTRACTGene expression involving RNA polymerase II is regulated by the concerted interplay between mRNA synthesis and degradation, crosstalk in which mRNA decay machinery and transcription machinery respectively impact transcription and mRNA stability. Rpb4, and likely dimer Rpb4/7, seem the central components of the RNA pol II governing these processes. In this work we unravel the molecular mechanisms participated by Rpb4 that mediate the posttranscriptional events regulating mRNA imprinting and stability. By RIP-Seq, we analyzed genome-wide the association of Rpb4 with mRNAs and demonstrated that it targeted a large population of more than 1400 transcripts. A group of these mRNAs was also the target of the RNA binding protein, Puf3. We demonstrated that Rpb4 and Puf3 physically, genetically, and functionally interact and also affect mRNA stability, and likely the imprinting, of a common group of mRNAs. Furthermore, the Rpb4 and Puf3 association with mRNAs depends on one another. We also demonstrated, for the first time, that Puf3 associates with chromatin in an Rpb4-dependent manner. Our data also suggest that Rpb4 could be a key element of the RNA pol II that coordinates mRNA synthesis, imprinting and stability in cooperation with RBPs.


2020 ◽  
Vol 117 (41) ◽  
pp. 25486-25493 ◽  
Author(s):  
Jun Xu ◽  
Wei Wang ◽  
Liang Xu ◽  
Jia-Yu Chen ◽  
Jenny Chong ◽  
...  

While loss-of-function mutations in Cockayne syndrome group B protein (CSB) cause neurological diseases, this unique member of the SWI2/SNF2 family of chromatin remodelers has been broadly implicated in transcription elongation and transcription-coupled DNA damage repair, yet its mechanism remains largely elusive. Here, we use a reconstituted in vitro transcription system with purified polymerase II (Pol II) and Rad26, a yeast ortholog of CSB, to study the role of CSB in transcription elongation through nucleosome barriers. We show that CSB forms a stable complex with Pol II and acts as an ATP-dependent processivity factor that helps Pol II across a nucleosome barrier. This noncanonical mechanism is distinct from the canonical modes of chromatin remodelers that directly engage and remodel nucleosomes or transcription elongation factors that facilitate Pol II nucleosome bypass without hydrolyzing ATP. We propose a model where CSB facilitates gene expression by helping Pol II bypass chromatin obstacles while maintaining their structures.


2009 ◽  
Vol 83 (13) ◽  
pp. 6457-6463 ◽  
Author(s):  
Ziying Han ◽  
Carolina Alves ◽  
Severin Gudima ◽  
John Taylor

ABSTRACT Hepatitis delta virus (HDV) encodes one protein, hepatitis delta antigen (δAg), a 195-amino-acid RNA binding protein essential for the accumulation of HDV RNA-directed RNA transcripts. It has been accepted that δAg localizes predominantly to the nucleolus in the absence of HDV genome replication while in the presence of replication, δAg facilitates HDV RNA transport to the nucleoplasm and helps redirect host RNA polymerase II (Pol II) to achieve transcription and accumulation of processed HDV RNA species. This study used immunostaining and confocal microscopy to evaluate factors controlling the localization of δAg in the presence and absence of replicating and nonreplicating HDV RNAs. When δAg was expressed in the absence of full-length HDV RNAs, it colocalized with nucleolin, a predominant nucleolar protein. With time, or more quickly after induced cell stress, there was a redistribution of both δAg and nucleolin to the nucleoplasm. Following expression of nonreplicating HDV RNAs, δAg moved to the nucleoplasm, but nucleolin was unchanged. When δAg was expressed along with replicating HDV RNA, it was found predominantly in the nucleoplasm along with Pol II. This localization was insensitive to inhibitors of HDV replication, suggesting that the majority of δAg in the nucleoplasm reflects ribonucleoprotein accumulation rather than ongoing transcription. An additional approach was to reevaluate several forms of δAg altered at specific locations considered to be essential for protein function. These studies provide evidence that δAg does not interact directly with either Pol II or nucleolin and that forms of δAg which support replication are also capable of prior nucleolar transit.


2017 ◽  
Vol 114 (46) ◽  
pp. 12172-12177 ◽  
Author(s):  
Stefano Malvezzi ◽  
Lucas Farnung ◽  
Claudia M. N. Aloisi ◽  
Todor Angelov ◽  
Patrick Cramer ◽  
...  

Several anticancer agents that form DNA adducts in the minor groove interfere with DNA replication and transcription to induce apoptosis. Therapeutic resistance can occur, however, when cells are proficient in the removal of drug-induced damage. Acylfulvenes are a class of experimental anticancer agents with a unique repair profile suggesting their capacity to stall RNA polymerase (Pol) II and trigger transcription-coupled nucleotide excision repair. Here we show how different forms of DNA alkylation impair transcription by RNA Pol II in cells and with the isolated enzyme and unravel a mode of RNA Pol II stalling that is due to alkylation of DNA in the minor groove. We incorporated a model for acylfulvene adducts, the stable 3-deaza-3-methoxynaphtylethyl-adenosine analog (3d-Napht-A), and smaller 3-deaza-adenosine analogs, into DNA oligonucleotides to assess RNA Pol II transcription elongation in vitro. RNA Pol II was strongly blocked by a 3d-Napht-A analog but bypassed smaller analogs. Crystal structure analysis revealed that a DNA base containing 3d-Napht-A can occupy the +1 templating position and impair closing of the trigger loop in the Pol II active center and polymerase translocation into the next template position. These results show how RNA Pol II copes with minor-groove DNA alkylation and establishes a mechanism for drug resistance.


2004 ◽  
Vol 24 (14) ◽  
pp. 6241-6252 ◽  
Author(s):  
Kristina L. Carroll ◽  
Dennis A. Pradhan ◽  
Josh A. Granek ◽  
Neil D. Clarke ◽  
Jeffry L. Corden

ABSTRACT RNA polymerase II (Pol II) termination is triggered by sequences present in the nascent transcript. Termination of pre-mRNA transcription is coupled to recognition of cis-acting sequences that direct cleavage and polyadenylation of the pre-mRNA. Termination of nonpolyadenylated [non-poly(A)] Pol II transcripts in Saccharomyces cerevisiae requires the RNA-binding proteins Nrd1 and Nab3. We have used a mutational strategy to characterize non-poly(A) termination elements downstream of the SNR13 and SNR47 snoRNA genes. This approach detected two common RNA sequence motifs, GUA[AG] and UCUU. The first motif corresponds to the known Nrd1-binding site, which we have verified here by gel mobility shift assays. We also show that Nab3 protein binds specifically to RNA containing the UCUU motif. Taken together, our data suggest that Nrd1 and Nab3 binding sites play a significant role in defining non-poly(A) terminators. As is the case with poly(A) terminators, there is no strong consensus for non-poly(A) terminators, and the arrangement of Nrd1p and Nab3p binding sites varies considerably. In addition, the organization of these sequences is not strongly conserved among even closely related yeasts. This indicates a large degree of genetic variability. Despite this variability, we were able to use a computational model to show that the binding sites for Nrd1 and Nab3 can identify genes for which transcription termination is mediated by these proteins.


2020 ◽  
Vol 117 (33) ◽  
pp. 19888-19895
Author(s):  
Haolin Liu ◽  
Srinivas Ramachandran ◽  
Nova Fong ◽  
Tzu Phang ◽  
Schuyler Lee ◽  
...  

More than 30% of genes in higher eukaryotes are regulated by RNA polymerase II (Pol II) promoter proximal pausing. Pausing is released by the positive transcription elongation factor complex (P-TEFb). However, the exact mechanism by which this occurs and whether phosphorylation of the carboxyl-terminal domain of Pol II is involved in the process remains unknown. We previously reported that JMJD5 could generate tailless nucleosomes at position +1 from transcription start sites (TSS), thus perhaps enable progression of Pol II. Here we find that knockout of JMJD5 leads to accumulation of nucleosomes at position +1. Absence of JMJD5 also results in loss of or lowered transcription of a large number of genes. Interestingly, we found that phosphorylation, by CDK9, of Ser2 within two neighboring heptad repeats in the carboxyl-terminal domain of Pol II, together with phosphorylation of Ser5 within the second repeat, HR-Ser2p (1, 2)-Ser5p (2) for short, allows Pol II to bind JMJD5 via engagement of the N-terminal domain of JMJD5. We suggest that these events bring JMJD5 near the nucleosome at position +1, thus allowing JMJD5 to clip histones on this nucleosome, a phenomenon that may contribute to release of Pol II pausing.


2020 ◽  
Vol 295 (12) ◽  
pp. 3990-4000 ◽  
Author(s):  
Sandeep Singh ◽  
Karol Szlachta ◽  
Arkadi Manukyan ◽  
Heather M. Raimer ◽  
Manikarna Dinda ◽  
...  

DNA double-stranded breaks (DSBs) are strongly associated with active transcription, and promoter-proximal pausing of RNA polymerase II (Pol II) is a critical step in transcriptional regulation. Mapping the distribution of DSBs along actively expressed genes and identifying the location of DSBs relative to pausing sites can provide mechanistic insights into transcriptional regulation. Using genome-wide DNA break mapping/sequencing techniques at single-nucleotide resolution in human cells, we found that DSBs are preferentially located around transcription start sites of highly transcribed and paused genes and that Pol II promoter-proximal pausing sites are enriched in DSBs. We observed that DSB frequency at pausing sites increases as the strength of pausing increases, regardless of whether the pausing sites are near or far from annotated transcription start sites. Inhibition of topoisomerase I and II by camptothecin and etoposide treatment, respectively, increased DSBs at the pausing sites as the concentrations of drugs increased, demonstrating the involvement of topoisomerases in DSB generation at the pausing sites. DNA breaks generated by topoisomerases are short-lived because of the religation activity of these enzymes, which these drugs inhibit; therefore, the observation of increased DSBs with increasing drug doses at pausing sites indicated active recruitment of topoisomerases to these sites. Furthermore, the enrichment and locations of DSBs at pausing sites were shared among different cell types, suggesting that Pol II promoter-proximal pausing is a common regulatory mechanism. Our findings support a model in which topoisomerases participate in Pol II promoter-proximal pausing and indicated that DSBs at pausing sites contribute to transcriptional activation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3161-3161
Author(s):  
Vicky Lock ◽  
Laurence Cooke ◽  
Murray Yule ◽  
Neil T Thompson ◽  
K. Della Croce ◽  
...  

Abstract Cyclin Dependent Kinases (CDKs) play a central role in the eukaryotic cell cycle. The activation of these kinases is modulated by the expression and binding of their regulatory cyclin partners. Their key role in cell cycle progression, coupled to evidence that pathways leading to their activation are deregulated in a number of human cancers makes them attractive therapeutic targets. More recently the role of CDKs 7, 8 and 9 in the regulation of transcription has been explored. CDK9 has been shown to play a role in the regulation of transcription via phosphorylation of RNA polymerase II (RNA pol II). The outcome of transcriptional inhibition via CDK9 exhibits significant variation between cell lines. B-Cell lymphoproliferative disorders, including CLL, rely on the expression of transcripts with a short half-life such as Mcl-1, Bcl-2 and XIAP for survival. In vitro studies have demonstrated that compounds with transcriptional inhibitory effects are effective pro-apoptotic agents in models of this disease. AT7519 is a potent inhibitor of cyclin dependent kinases 1, 2 and 9 and is currently in early phase clinical development. These studies profile the mechanism of action of AT7519 on CLL cells isolated from patients. Primary cell samples were isolated from a total of 15 patients with CLL with various stages of disease (8 Stage 0, 0/I or II and 7 Stage IV) and who were either treatment naïve or had received a variety of prior therapies. Patient samples were characterised for cytogenetic abnormalities (11q, 17p and 13q deletion or trisomy 12) as well IgVH mutation and ZAP70 expression. AT7519 was shown to induce apoptosis (by MTS, morphology and PARP cleavage) in these samples at concentrations of 100–700nM. AT7519 appears equally effective at inhibiting the survival of CLL cells harbouring a variety of mutations including those representative of patients that fall within poorer prognosis treatment groups. The amount of AT7519 required to induce cell death in 50% of the CLL cell population increased as exposure time was decreased but significant cell death was obtained at doses approximating to 1uM following 4–6h of treatment. These doses are equivalent to exposures achieved in ongoing AT7519 clinical studies indicating that cytotoxic doses can be achieved in patients on well tolerated schedules. The mechanism of AT7519 cytotoxic effects was investigated by western blotting for a variety of cell cycle and apoptotic markers following incubation with compound. Short term treatments (4–6h) resulted in inhibition of phosphorylation of the transcriptional marker RNA pol II and the downregulation of the anti-apoptotic protein Mcl-1. Additional antiapoptotic proteins including XIAP and Bcl-2 remained unchanged. The reduction in Mcl-1 protein levels was associated with an increase in the apoptotic marker cleaved PARP. No inhibition of cell cycle markers such as phospho-retinoblastoma protein was observed in the same samples suggesting that the cytotoxic effects of AT7519 in CLL patient samples is due to its transcriptional activity alone. Together the data suggest AT7519 offers a promising treatment strategy for patients with advanced B-cell leukemia and lymphoma.


2006 ◽  
Vol 26 (7) ◽  
pp. 2688-2696 ◽  
Author(s):  
Eric J. Steinmetz ◽  
Sarah B. H. Ng ◽  
Joseph P. Cloute ◽  
David A. Brow

ABSTRACT Most eukaryotic genes are transcribed by RNA polymerase II (Pol II), including those that produce mRNAs and many noncoding functional RNAs. Proper expression of these genes requires efficient termination by Pol II to avoid transcriptional interference and synthesis of extended, nonfunctional RNAs. We previously described a pathway for yeast Pol II termination that involves recognition of an element in the nascent transcript by the essential RNA-binding protein Nrd1. The Nrd1-dependent pathway appears to be used primarily for nonpolyadenylated transcripts, such as the small nuclear and small nucleolar RNAs (snoRNAs). mRNAs are thought to use a distinct pathway that is coupled to cleavage and polyadenylation of the transcript. Here we show that the terminator elements for two yeast snoRNA genes also direct polyadenylated 3′-end formation in the context of an mRNA 3′ untranslated region. A selection for cis-acting terminator readthrough mutations identified conserved features of these elements, some of which are similar to cleavage and polyadenylation signals. A selection for trans-acting mutations that induce readthrough of both a snoRNA and an mRNA terminator yielded mutations in the Rpb3 and Rpb11 subunits of Pol II that define a remarkably discrete surface on the trailing end of the enzyme. Our results suggest that, at least in budding yeast, protein-coding and noncoding Pol II-transcribed genes use similar mechanisms to direct termination and that the termination signal is transduced through the Rpb3/Rpb11 heterodimer.


Sign in / Sign up

Export Citation Format

Share Document