scholarly journals Phospholipase C γ1 regulates early secretory trafficking and cell migration via interaction with p115

2015 ◽  
Vol 26 (12) ◽  
pp. 2263-2278 ◽  
Author(s):  
Valentina Millarte ◽  
Gaelle Boncompain ◽  
Kerstin Tillmann ◽  
Franck Perez ◽  
Elizabeth Sztul ◽  
...  

The role of early secretory trafficking in the regulation of cell motility remains incompletely understood. Here we used a small interfering RNA screen to monitor the effects on structure of the Golgi apparatus and cell migration. Two major Golgi phenotypes were observed—fragmented and small Golgi. The latter exhibited a stronger correlation with a defect in cell migration. Among the small Golgi hits, we focused on phospholipase C γ1 (PLCγ1). We show that PLCγ1 regulates Golgi structure and cell migration independently of its catalytic activity but in a manner that depends on interaction with the tethering protein p115. PLCγ1 regulates the dynamics of p115 in the early secretory pathway, thereby controlling trafficking from the endoplasmic reticulum to the Golgi. Our results uncover a new function of PLCγ1 that is independent of its catalytic function and link early secretory trafficking to the regulation of cell migration.

2001 ◽  
Vol 114 (11) ◽  
pp. 2199-2204 ◽  
Author(s):  
Tineke Voorn-Brouwer ◽  
Astrid Kragt ◽  
Henk F. Tabak ◽  
Ben Distel

The classic model for peroxisome biogenesis states that new peroxisomes arise by the fission of pre-existing ones and that peroxisomal matrix and membrane proteins are recruited directly from the cytosol. Recent studies challenge this model and suggest that some peroxisomal membrane proteins might traffic via the endoplasmic reticulum to peroxisomes. We have studied the trafficking in human fibroblasts of three peroxisomal membrane proteins, Pex2p, Pex3p and Pex16p, all of which have been suggested to transit the endoplasmic reticulum before arriving in peroxisomes. Here, we show that targeting of these peroxisomal membrane proteins is not affected by inhibitors of COPI and COPII that block vesicle transport in the early secretory pathway. Moreover, we have obtained no evidence for the presence of these peroxisomal membrane proteins in compartments other than peroxisomes and demonstrate that COPI and COPII inhibitors do not affect peroxisome morphology or integrity. Together, these data fail to provide any evidence for a role of the endoplasmic reticulum in peroxisome biogenesis.


2005 ◽  
Vol 72 ◽  
pp. 1-13 ◽  
Author(s):  
Krysten J. Palmer ◽  
Peter Watson ◽  
David J. Stephens

The organization of intracellular compartments and the transfer of components between them are central to the correct functioning of mammalian cells. Proteins and lipids are transferred between compartments by the formation, movement and subsequent specific fusion of transport intermediates. These vesicles and membrane clusters must be coupled to the cytoskeleton and to motor proteins that drive motility. Anterograde ER (endoplasmic reticulum)-to-Golgi transport, and the converse step of retrograde traffic from the Golgi to the ER, are now known to involve coupling of membranes to the microtubule cytoskeleton. Here we shall discuss our current understanding of the mechanisms that link membrane traffic in the early secretory pathway to the microtubule cytoskeleton in mammalian cells. Recent data have also provided molecular detail of functional co-ordination of motor proteins to specify directionality, as well as mechanisms for regulating motor activity by protein phosphorylation.


2011 ◽  
Vol 300 (3) ◽  
pp. C542-C549 ◽  
Author(s):  
Mikhail Strokin ◽  
Marina Sergeeva ◽  
Georg Reiser

Many Ca2+-regulated intracellular processes are involved in the development of neuroinflammation. However, the changes of Ca2+ signaling in the brain under inflammatory conditions were hardly studied. ATP-induced Ca2+ signaling is a central event of signal transmission in astrocytic networks. We investigated primary astrocytes after proinflammatory stimulation with lipopolysaccharide (LPS; 100 ng/ml) for 6–24 h. We reveal that Ca2+ responses to purinergic ATP stimulation are significantly increased in amplitude and duration after stimulation with LPS. We detected that increased amplitudes of Ca2+ responses to ATP in LPS-treated astrocytes can be explained by substantial increase of Ca2+ load in stores in endoplasmic reticulum. The mechanism implies enhanced Ca2+ store refilling due to the amplification of capacitative Ca2+ entry. The reason for the increased duration of Ca2+ responses in LPS-treated cells is also the amplified capacitative Ca2+ entry. Next, we established that the molecular mechanism for the LPS-induced amplification of Ca2+ responses in astrocytes is increased expression and activity of VIA phospholipase A2 (VIA iPLA2). Indeed, both gene silencing with specific small interfering RNA and pharmacological inhibition of VIA iPLA2 with S-bromoenol lactone reduced the load of the Ca2+ stores and caused a decrease in the amplitudes of Ca2+ responses in LPS-treated astrocytes to values, which were comparable with those in untreated cells. Our findings highlight a novel regulatory role of VIA iPLA2 in development of inflammation in brain. We suggest that this enzyme might be a possible target for treatment of pathologies related to brain inflammation.


2015 ◽  
Vol 89 (16) ◽  
pp. 8318-8333 ◽  
Author(s):  
Adriaan H. de Wilde ◽  
Kazimier F. Wannee ◽  
Florine E. M. Scholte ◽  
Jelle J. Goeman ◽  
Peter ten Dijke ◽  
...  

ABSTRACTTo identify host factors relevant for severe acute respiratory syndrome-coronavirus (SARS-CoV) replication, we performed a small interfering RNA (siRNA) library screen targeting the human kinome. Protein kinases are key regulators of many cellular functions, and the systematic knockdown of their expression should provide a broad perspective on factors and pathways promoting or antagonizing coronavirus replication. In addition to 40 proteins that promote SARS-CoV replication, our study identified 90 factors exhibiting an antiviral effect. Pathway analysis grouped subsets of these factors in specific cellular processes, including the innate immune response and the metabolism of complex lipids, which appear to play a role in SARS-CoV infection. Several factors were selected for in-depth validation in follow-up experiments. In cells depleted for the β2 subunit of the coatomer protein complex (COPB2), the strongest proviral hit, we observed reduced SARS-CoV protein expression and a >2-log reduction in virus yield. Knockdown of the COPB2-related proteins COPB1 and Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1) also suggested that COPI-coated vesicles and/or the early secretory pathway are important for SARS-CoV replication. Depletion of the antiviral double-stranded RNA-activated protein kinase (PKR) enhanced virus replication in the primary screen, and validation experiments confirmed increased SARS-CoV protein expression and virus production upon PKR depletion. In addition, cyclin-dependent kinase 6 (CDK6) was identified as a novel antiviral host factor in SARS-CoV replication. The inventory of pro- and antiviral host factors and pathways described here substantiates and expands our understanding of SARS-CoV replication and may contribute to the identification of novel targets for antiviral therapy.IMPORTANCEReplication of all viruses, including SARS-CoV, depends on and is influenced by cellular pathways. Although substantial progress has been made in dissecting the coronavirus replicative cycle, our understanding of the host factors that stimulate (proviral factors) or restrict (antiviral factors) infection remains far from complete. To study the role of host proteins in SARS-CoV infection, we set out to systematically identify kinase-regulated processes that influence virus replication. Protein kinases are key regulators in signal transduction, controlling a wide variety of cellular processes, and many of them are targets of approved drugs and other compounds. Our screen identified a variety of hits and will form the basis for more detailed follow-up studies that should contribute to a better understanding of SARS-CoV replication and coronavirus-host interactions in general. The identified factors could be interesting targets for the development of host-directed antiviral therapy to treat infections with SARS-CoV or other pathogenic coronaviruses.


2016 ◽  
Vol 27 (11) ◽  
pp. 1834-1844 ◽  
Author(s):  
John V. Cox ◽  
Rita Kansal ◽  
Michael A. Whitt

To evaluate the role of cytoplasmic domains of membrane-spanning proteins in directing trafficking through the secretory pathway, we generated fluorescently tagged VSV G tsO45 with either the native G tail (G) or a cytoplasmic tail derived from the chicken AE1-4 anion exchanger (GAE). We previously showed that these two proteins progressed through the Golgi with distinct kinetics. To investigate the basis for the differential sorting of G and GAE, we analyzed the role of several Golgi-associated small GTP-binding proteins and found that Rab43 differentially regulated their transport through the Golgi. We show that the expression of GFP-Rab43 arrested the anterograde transport of GAEin a Rab43-positive medial Golgi compartment. GFP-Rab43 expression also inhibited the acquisition of endoH-resistant sugars and the surface delivery of GAE, as well as the surface delivery of the AE1-4 anion exchanger. In contrast, GFP-Rab43 expression did not affect the glycosylation or surface delivery of G. Unexpectedly, down-regulation of endogenous Rab43 using small interfering RNA resulted in an increase in the accumulation of GAEon the cell surface while having minimal effect on the surface levels of G. Our data demonstrate that Rab43 regulates the sorting of a subset of membrane-spanning cargo as they progress through the medial Golgi.


2021 ◽  
Author(s):  
Janine McCaughey ◽  
Judith M. Mantell ◽  
Chris R. Neal ◽  
Kate Heesom ◽  
David J. Stephens

AbstractComplex machinery is required to drive secretory cargo export from the endoplasmic reticulum. In vertebrates, this includes transport and Golgi organization protein 1 (TANGO1), encoded by the Mia3 gene. Here, using genome engineering of human cells light microscopy, secretion assays, and proteomics, we show loss of Mia3/TANGO1 results in formation of numerous vesicles and a loss of early secretory pathway integrity. This restricts secretion not only of large proteins like procollagens but of all types of secretory cargo. Our data shows that Mia3/TANGO1 constrains the propensity of COPII to form vesicles promoting instead the formation of the ER-Golgi intermediate compartment. Thus, Mia3/TANGO1 facilities the secretion of complex and high volume cargoes from vertebrate cells.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2637
Author(s):  
Joon Min Jung ◽  
Tai Kyung Noh ◽  
Soo Youn Jo ◽  
Su Yeon Kim ◽  
Youngsup Song ◽  
...  

Epidermal keratinocytes are considered as the most important neighboring cells that modify melanogenesis. Our previous study used microarray to show that guanine deaminase (GDA) gene expression is highly increased in melasma lesions. Hence, we investigated the role of GDA in skin pigmentation. We examined GDA expression in post-inflammatory hyperpigmentation (PIH) lesions, diagnosed as Riehl’s melanosis. We further investigated the possible role of keratinocyte-derived GDA in melanogenesis by quantitative PCR, immunofluorescence staining, small interfering RNA-based GDA knockdown, and adenovirus-mediated GDA overexpression. We found higher GDA positivity in the hyperpigmentary lesional epidermis than in the perilesional epidermis. Both UVB irradiation and stem cell factor (SCF) plus endothelin-1 (ET-1) were used, which are well-known melanogenic stimuli upregulating GDA expression in both keratinocyte culture alone and keratinocyte and melanocyte coculture. GDA knockdown downregulated melanin content, while GDA overexpression promoted melanogenesis in the coculture. When melanocytes were treated with UVB-exposed keratinocyte-conditioned media, the melanin content was increased. Also, GDA knockdown lowered SCF and ET-1 expression levels in keratinocytes. GDA in epidermal keratinocytes may promote melanogenesis by upregulating SCF and ET-1, suggesting its role in skin hyperpigmentary disorders.


2007 ◽  
Vol 282 (49) ◽  
pp. 35964-35977 ◽  
Author(s):  
Juneth J. Partridge ◽  
Mark A. Madsen ◽  
Veronica C. Ardi ◽  
Thales Papagiannakopoulos ◽  
Tatyana A. Kupriyanova ◽  
...  

The role of tumor-derived matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinase (TIMPs) in cancer cell dissemination was analyzed by employing two variants of human HT-1080 fibrosarcoma, HT-hi/diss and HT-lo/diss, which differ by 50-100-fold in their ability to intravasate and metastasize in the chick embryo. HT-hi/diss and HT-lo/diss were compared by quantitative reverse transcription-PCR and Western blot analyses for mRNA and protein expression of nine MMPs (MMP-1, -2, -3, -7, -8, -9, -10, -13, and -14) and three TIMPs (TIMP-1, -2, and -3) in cultured cells in vitro and in primary tumors in vivo. MMP-1 and MMP-9 were more abundant in the HT-hi/diss variant, both in cultures and in tumors, whereas the HT-lo/diss variant consistently expressed higher levels of MMP-2, TIMP-1, and TIMP-2. Small interfering RNA-mediated down-regulation of MMP-2 and TIMP-2 increased intravasation of HT-lo/diss cells. Coordinately, treatment of the developing HT-hi/diss tumors with recombinant TIMP-1 and TIMP-2 significantly reduced HT-hi/diss cell intravasation. However, a substantial increase of HT-hi/diss dissemination was observed upon small interfering RNA-mediated down-regulation of three secreted MMPs, including the interstitial collagenase MMP-1 and the two gelatinases, MMP-2 and MMP-9, but not the membrane-tethered MMP-14. The addition of recombinant pro-MMP-9 protein to the HT-hi/diss tumors reversed the increased intravasation of HT-hi/diss cells, in which MMP-9 was stably down-regulated by short hairpin RNA interference. This rescue did not occur if the pro-MMP-9 was stoichiometrically complexed with TIMP-1, pointing to a direct role of the MMP-9 enzyme in regulation of HT-hi/diss intravasation. Collectively, these findings demonstrate that tumor-derived MMPs may have protective functions in cancer cell intravasation, i.e. not promoting but rather catalytically interfering with the early stages of cancer dissemination.


2014 ◽  
Vol 290 (8) ◽  
pp. 4981-4993 ◽  
Author(s):  
Hideki Shibata ◽  
Takashi Kanadome ◽  
Hirofumi Sugiura ◽  
Takeru Yokoyama ◽  
Minami Yamamuro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document