scholarly journals Basic mechanism for biorientation of mitotic chromosomes is provided by the kinetochore geometry and indiscriminate turnover of kinetochore microtubules

2015 ◽  
Vol 26 (22) ◽  
pp. 3985-3998 ◽  
Author(s):  
Anatoly V. Zaytsev ◽  
Ekaterina L. Grishchuk

Accuracy of chromosome segregation relies on the ill-understood ability of mitotic kinetochores to biorient, whereupon each sister kinetochore forms microtubule (MT) attachments to only one spindle pole. Because initial MT attachments result from chance encounters with the kinetochores, biorientation must rely on specific mechanisms to avoid and resolve improper attachments. Here we use mathematical modeling to critically analyze the error-correction potential of a simplified biorientation mechanism, which involves the back-to-back arrangement of sister kinetochores and the marked instability of kinetochore–MT attachments. We show that a typical mammalian kinetochore operates in a near-optimal regime, in which the back-to-back kinetochore geometry and the indiscriminate kinetochore–MT turnover provide strong error-correction activity. In human cells, this mechanism alone can potentially enable normal segregation of 45 out of 46 chromosomes during one mitotic division, corresponding to a mis-segregation rate in the range of 10−1–10−2 per chromosome. This theoretical upper limit for chromosome segregation accuracy predicted with the basic mechanism is close to the mis-segregation rate in some cancer cells; however, it cannot explain the relatively low chromosome loss in diploid human cells, consistent with their reliance on additional mechanisms.

1998 ◽  
Vol 143 (6) ◽  
pp. 1635-1646 ◽  
Author(s):  
Jill M. Schumacher ◽  
Andy Golden ◽  
Peter J. Donovan

An emerging family of kinases related to the Drosophila Aurora and budding yeast Ipl1 proteins has been implicated in chromosome segregation and mitotic spindle formation in a number of organisms. Unlike other Aurora/Ipl1-related kinases, the Caenorhabditis elegans orthologue, AIR-2, is associated with meiotic and mitotic chromosomes. AIR-2 is initially localized to the chromosomes of the most mature prophase I–arrested oocyte residing next to the spermatheca. This localization is dependent on the presence of sperm in the spermatheca. After fertilization, AIR-2 remains associated with chromosomes during each meiotic division. However, during both meiotic anaphases, AIR-2 is present between the separating chromosomes. AIR-2 also remains associated with both extruded polar bodies. In the embryo, AIR-2 is found on metaphase chromosomes, moves to midbody microtubules at anaphase, and then persists at the cytokinesis remnant. Disruption of AIR-2 expression by RNA- mediated interference produces entire broods of one-cell embryos that have executed multiple cell cycles in the complete absence of cytokinesis. The embryos accumulate large amounts of DNA and microtubule asters. Polar bodies are not extruded, but remain in the embryo where they continue to replicate. The cytokinesis defect appears to be late in the cell cycle because transient cleavage furrows initiate at the proper location, but regress before the division is complete. Additionally, staining with a marker of midbody microtubules revealed that at least some of the components of the midbody are not well localized in the absence of AIR-2 activity. Our results suggest that during each meiotic and mitotic division, AIR-2 may coordinate the congression of metaphase chromosomes with the subsequent events of polar body extrusion and cytokinesis.


2018 ◽  
Author(s):  
Babhrubahan Roy ◽  
Vikash Verma ◽  
Janice Sim ◽  
Adrienne Fontan ◽  
Ajit P. Joglekar

AbstractAccurate chromosome segregation during cell division requires that the pair of sister kinetochores on each chromosome attach to microtubules originating from opposite spindle poles. This is ensured by the combined action of the Spindle Assembly Checkpoint (SAC), which detects unattached kinetochores, and an error correction mechanism that destabilizes incorrect attachment of both sister kinetochores to the same spindle pole. These processes are downregulated by Protein Phosphatase 1 (PP1), which both silences the SAC and stabilizes kinetochore-microtubule attachments. We find that this dual PP1 role can be problematic: if PP1 is recruited to the kinetochore for SAC silencing prior to chromosome biorientation, it interferes with error correction. We show that to mitigate this cross-talk, the yeast kinetochore uses independent PP1 sources to stabilize correct attachments and to silence the SAC, and also delays the recruitment of PP1 for SAC silencing. Consequently, chromosome biorientation precedes SAC silencing ensuring accurate chromosome segregation.


2021 ◽  
Author(s):  
Masashi Nambu ◽  
Atsuki Kishikawa ◽  
Takatomi Yamada ◽  
Kento Ichikawa ◽  
Yunosuke Kira ◽  
...  

Kinetochores drive chromosome segregation by mediating chromosome interactions with the spindle. In higher eukaryotes, sister kinetochores are separately positioned on opposite sides of sister centromeres during mitosis, but associate with each other during meiosis I. Kinetochore association facilitates the attachment of sister chromatids to the same pole, enabling the segregation of homologous chromosomes toward opposite poles. In the fission yeast, Schizosaccharomyces pombe, Rec8-containing meiotic cohesin is suggested to establish kinetochore associations by mediating cohesion of the centromere cores. However, cohesin-mediated kinetochore associations on intact chromosomes have never been demonstrated directly. Here, we describe a novel method for the direct evaluation of kinetochore associations on intact chromosomes in live S. pombe cells, and demonstrate that sister kinetochores and the centromere cores are positioned separately on mitotic chromosomes but associate with each other on meiosis I chromosomes. Furthermore, we demonstrate that kinetochore association depends on meiotic cohesin and the cohesin regulators, Moa1 and Mrc1, and requires mating-pheromone signaling for its establishment. These results confirm cohesin-mediated kinetochore association and its regulatory mechanisms, along with the usefulness of the developed method for its analysis.


2021 ◽  
Author(s):  
Md Hashim Reza ◽  
Jigyasa Verma ◽  
Ratul Chowdhury ◽  
Ravi Manjithaya ◽  
Kaustuv Sanyal

Asymmetric spindle pole body (SPB) inheritance requires a cascade of events that involve kinases, phosphatases and structural scaffold proteins including molecular motors and microtubule-associated proteins present in the nucleus and/or the cytoplasm. Higher levels of an SPB component Spc72 and the spindle positioning factor Kar9 at the old SPB, which migrates to the daughter cell, ensure asymmetric SPB inheritance. Timely SPB duplication followed by its asymmetric inheritance is a key to correct spindle alignment leading to high-fidelity chromosome segregation. By combining in silico analysis of known protein-protein interactions of autophagy (Atg)-related proteins with those that constitute the chromosome segregation machinery, and growth dynamics of 35 atg mutants in the presence of a microtubule poison, we identified Atg11 as a potential regulator of chromosome transmission. Cells lacking Atg11 did not show any kinetochore defects but displayed a high rate of chromosome loss and delayed anaphase onset. Atg11 positively interacted with Kar9 and Kip2 and negatively with Dyn1 and Kar3 in mediating proper chromosome segregation suggesting a role of Atg11 in spindle positioning. Indeed, atg11∆ cells displayed an inverted SPB inheritance. We further show that Atg11 promotes asymmetric localization of Spc72 and Kar9 on the old SPB. Atg11 physically interacted with Spc72 and transiently localized close to the old SPB during metaphase-to-anaphase progression. Taken together, our study uncovers an autophagy-independent role of Atg11 in spindle alignment and emphasizes the importance of unbiased screens to identify factors mediating the complex and intricate crosstalk between processes fundamental to genomic integrity.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Claudia Pellacani ◽  
Elisabetta Bucciarelli ◽  
Fioranna Renda ◽  
Daniel Hayward ◽  
Antonella Palena ◽  
...  

Several studies have shown that RNAi-mediated depletion of splicing factors (SFs) results in mitotic abnormalities. However, it is currently unclear whether these abnormalities reflect defective splicing of specific pre-mRNAs or a direct role of the SFs in mitosis. Here, we show that two highly conserved SFs, Sf3A2 and Prp31, are required for chromosome segregation in both Drosophila and human cells. Injections of anti-Sf3A2 and anti-Prp31 antibodies into Drosophila embryos disrupt mitotic division within 1 min, arguing strongly against a splicing-related mitotic function of these factors. We demonstrate that both SFs bind spindle microtubules (MTs) and the Ndc80 complex, which in Sf3A2- and Prp31-depleted cells is not tightly associated with the kinetochores; in HeLa cells the Ndc80/HEC1-SF interaction is restricted to the M phase. These results indicate that Sf3A2 and Prp31 directly regulate interactions among kinetochores, spindle microtubules and the Ndc80 complex in both Drosophila and human cells.


Genetics ◽  
2003 ◽  
Vol 165 (2) ◽  
pp. 489-503 ◽  
Author(s):  
Karen E Ross ◽  
Orna Cohen-Fix

Abstract Cdh1p, a substrate specificity factor for the cell cycle-regulated ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C), promotes exit from mitosis by directing the degradation of a number of proteins, including the mitotic cyclins. Here we present evidence that Cdh1p activity at the M/G1 transition is important not only for mitotic exit but also for high-fidelity chromosome segregation in the subsequent cell cycle. CDH1 showed genetic interactions with MAD2 and PDS1, genes encoding components of the mitotic spindle assembly checkpoint that acts at metaphase to prevent premature chromosome segregation. Unlike cdh1Δ and mad2Δ single mutants, the mad2Δ cdh1Δ double mutant grew slowly and exhibited high rates of chromosome and plasmid loss. Simultaneous deletion of PDS1 and CDH1 caused extensive chromosome missegregation and cell death. Our data suggest that at least part of the chromosome loss can be attributed to kinetochore/spindle problems. Our data further suggest that Cdh1p and Sic1p, a Cdc28p/Clb inhibitor, have overlapping as well as nonoverlapping roles in ensuring proper chromosome segregation. The severe growth defects of both mad2Δ cdh1Δ and pds1Δ cdh1Δ strains were rescued by overexpressing Swe1p, a G2/M inhibitor of the cyclin-dependent kinase, Cdc28p/Clb. We propose that the failure to degrade cyclins at the end of mitosis leaves cdh1Δ mutant strains with abnormal Cdc28p/Clb activity that interferes with proper chromosome segregation.


2020 ◽  
Vol 48 (12) ◽  
pp. 6583-6596
Author(s):  
Akiko Fujimura ◽  
Yuki Hayashi ◽  
Kazashi Kato ◽  
Yuichiro Kogure ◽  
Mutsuro Kameyama ◽  
...  

Abstract The nucleolus is a membrane-less nuclear structure that disassembles when cells undergo mitosis. During mitosis, nucleolar factors are thus released from the nucleolus and dynamically change their subcellular localization; however, their functions remain largely uncharacterised. Here, we found that a nucleolar factor called nucleolar protein 11 (NOL11) forms a protein complex with two tryptophan-aspartic acid (WD) repeat proteins named WD-repeat protein 43 (WDR43) and Cirhin in mitotic cells. This complex, referred to here as the NWC (NOL11-WDR43-Cirhin) complex, exists in nucleoli during interphase and translocates to the periphery of mitotic chromosomes, i.e., perichromosomal regions. During mitotic progression, both the congression of chromosomes to the metaphase plate and sister chromatid cohesion are impaired in the absence of the NWC complex, as it is required for the centromeric enrichment of Aurora B and the associating phosphorylation of histone H3 at threonine 3. These results reveal the characteristics of a novel protein complex consisting of nucleolar proteins, which is required for regulating kinetochores and centromeres to ensure faithful chromosome segregation.


1994 ◽  
Vol 14 (9) ◽  
pp. 6350-6360
Author(s):  
F Houman ◽  
C Holm

To investigate chromosome segregation in Saccharomyces cerevisiae, we examined a collection of temperature-sensitive mutants that arrest as large-budded cells at restrictive temperatures (L. H. Johnston and A. P. Thomas, Mol. Gen. Genet. 186:439-444, 1982). We characterized dbf8, a mutation that causes cells to arrest with a 2c DNA content and a short spindle. DBF8 maps to chromosome IX near the centromere, and it encodes a 36-kDa protein that is essential for viability at all temperatures. Mutational analysis reveals that three dbf8 alleles are nonsense mutations affecting the carboxy-terminal third of the encoded protein. Since all of these mutations confer temperature sensitivity, it appears that the carboxyl-terminal third of the protein is essential only at a restrictive temperature. In support of this conclusion, an insertion of URA3 at the same position also confers a temperature-sensitive phenotype. Although they show no evidence of DNA damage, dbf8 mutants exhibit increased rates of chromosome loss and nondisjunction even at a permissive temperature. Taken together, our data suggest that Dbf8p plays an essential role in chromosome segregation.


1991 ◽  
Vol 11 (10) ◽  
pp. 5212-5221
Author(s):  
B Jehn ◽  
R Niedenthal ◽  
J H Hegemann

In the yeast Saccharomyces cerevisiae, the complete information needed in cis to specify a fully functional mitotic and meiotic centromere is contained within 120 bp arranged in the three conserved centromeric (CEN) DNA elements CDEI, -II, and -III. The 25-bp CDEIII is most important for faithful chromosome segregation. We have constructed single- and double-base substitutions in all highly conserved residues and one nonconserved residue of this element and analyzed the mitotic in vivo function of the mutated CEN DNAs, using an artificial chromosome. The effects of the mutations on chromosome segregation vary between wild-type-like activity (chromosome loss rate of 4.8 x 10(-4)) and a complete loss of CEN function. Data obtained by saturation mutagenesis of the palindromic core sequence suggest asymmetric involvement of the palindromic half-sites in mitotic CEN function. The poor CEN activity of certain single mutations could be improved by introducing an additional single mutation. These second-site suppressors can be found at conserved and nonconserved positions in CDEIII. Our suppression data are discussed in the context of natural CDEIII sequence variations found in the CEN sequences of different yeast chromosomes.


2021 ◽  
Vol 220 (7) ◽  
Author(s):  
Franz Meitinger ◽  
Dong Kong ◽  
Midori Ohta ◽  
Arshad Desai ◽  
Karen Oegema ◽  
...  

Centrosomes are composed of a centriolar core surrounded by pericentriolar material that nucleates microtubules. The ubiquitin ligase TRIM37 localizes to centrosomes, but its centrosomal roles are not yet defined. We show that TRIM37 does not control centriole duplication, structure, or the ability of centrioles to form cilia but instead prevents assembly of an ectopic centrobin-scaffolded structured condensate that forms by budding off of centrosomes. In ∼25% of TRIM37-deficient cells, the condensate organizes an ectopic spindle pole, recruiting other centrosomal proteins and acquiring microtubule nucleation capacity during mitotic entry. Ectopic spindle pole–associated transient multipolarity and multipolar segregation in TRIM37-deficient cells are suppressed by removing centrobin, which interacts with and is ubiquitinated by TRIM37. Thus, TRIM37 ensures accurate chromosome segregation by preventing the formation of centrobin-scaffolded condensates that organize ectopic spindle poles. Mutations in TRIM37 cause the disorder mulibrey nanism, and patient-derived cells harbor centrobin condensate-organized ectopic poles, leading us to propose that chromosome missegregation is a pathological mechanism in this disorder.


Sign in / Sign up

Export Citation Format

Share Document