scholarly journals Zooming in on the cell biology of disease

2021 ◽  
Vol 32 (22) ◽  
Author(s):  
Rushika M. Perera

Today’s cell biology could be considered a fusion of disciplines that blends advanced genetics, molecular biology, biochemistry, and engineering to answer fundamental as well as medically relevant scientific questions. Accordingly, our understanding of diseases is greatly aided by an existing vast knowledge base of fundamental cell biology. Gunter Blobel captured this concept when he said, “the tremendous acquisition of basic knowledge will allow a much more rational treatment of cancer, viral infection, degenerative disease and mental disease.” In other words, without cell biology can we truly understand, prevent, or effectively treat a disease?

2021 ◽  
Author(s):  
Harry Singer ◽  
Terrance G Cooper

Abstract Micromanipulators, more than any other instrument, opened the early doors to developing the powerful genetics of yeast that underlies much of the molecular work today. The ability to separate the spores of a tetrad and analyze their phenotypes generated the genetic maps and biology upon which subsequent cloning, sequencing, cutting edge molecular and cell biology depended. This work describes the development of those micromanipulators from garage to barn to factory and the developer of the sophisticated instruments we use today. For more than 30 years Carl Singer and his family were staunch and generous supporters of the International Conferences on Yeast Genetics and Molecular Biology meetings both in Europe and America. Carl Singer's displays at meetings became a traditional fixture and engaged the appetites of many students and advanced researchers to employ a technique that many perceived as too complicated or difficult, but which he made simple and easy to learn. His experiences also document a sketch of the international yeast meetings, their venues and how they developed through the years.


2021 ◽  
pp. 140349482110270
Author(s):  
Knut Ole Sundnes ◽  
Geir Sverre Braut

The COVID-19 epidemic has revealed a shortage of basic knowledge and understanding of pandemics, especially regarding their dynamics and how to contain them. The results are a host of governments’ decrees and instructions, one replacing the other, often within the same week. It has further, in a truly short time, resulted in an overwhelming number of publications, many of them prioritising early publication over quality. This commentary addresses the concept of structured research related to disasters and how the use of endorsed guidelines will facilitate well-designed evaluation research with improved rigour and external validity, even if applied retrospectively. The outcome should be a solidified knowledge base. Further, the important role of public health efforts is to be highlighted, as their role has proved crucial during the COVID-19 pandemic.


Parasite ◽  
2020 ◽  
Vol 27 ◽  
pp. 49 ◽  
Author(s):  
André G. Buret ◽  
Simone M. Cacciò ◽  
Loïc Favennec ◽  
Staffan Svärd

Although Giardia duodenalis is recognized as one of the leading causes of parasitic human diarrhea in the world, knowledge of the mechanisms of infection is limited, as the pathophysiological consequences of infection remain incompletely elucidated. Similarly, the reason for and consequences of the very specific genome-organization in this parasite with 2 active nuclei is only partially known. Consistent with its tradition, the 7th International Giardia and Cryptosporidium Conference (IGCC 2019) was held from June 23 to 26, 2019, at the Faculty of Medicine and Pharmacy of the University of Rouen-Normandie, France, to discuss current research perspectives in the field. This renowned event brought together an international delegation of researchers to present and debate recent advances and identify the main research themes and knowledge gaps. The program for this interdisciplinary conference included all aspects of host-parasite relationships, from basic research to applications in human and veterinary medicine, as well as the environmental issues raised by water-borne parasites and their epidemiological consequences. With regard to Giardia and giardiasis, the main areas of research for which new findings and the most impressive communications were presented and discussed included: parasite ecology and epidemiology of giardiasis, Giardia-host interactions, and cell biology of Giardia, genomes and genomic evolution. The high-quality presentations discussed at the Conference noted breakthroughs and identified new opportunities that will inspire researchers and funding agencies to stimulate future research in a “one health” approach to improve basic knowledge and clinical and public health management of zoonotic giardiasis.


1991 ◽  
Vol 10 (1) ◽  
pp. 18-25
Author(s):  
D. I. Ferreira

Conventional plant breeding has made a significant impact on the increase in crop production during the last half century. Several shortcomings however, opened up the opportunities for the application of biotechnology in plant breeding. The vari­ous approaches in the field of cell biology (tissue culture) and molecular biology (recombinant DNA technology) are dis­cussed and the application thereof is advocated in a global approach to plant breeding.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ratchapong Netsrithong ◽  
Methichit Wattanapanitch

Adoptive cell therapy (ACT) using chimeric antigen receptor (CAR) T cells holds impressive clinical outcomes especially in patients who are refractory to other kinds of therapy. However, many challenges hinder its clinical applications. For example, patients who undergo chemotherapy usually have an insufficient number of autologous T cells due to lymphopenia. Long-term ex vivo expansion can result in T cell exhaustion, which reduces the effector function. There is also a batch-to-batch variation during the manufacturing process, making it difficult to standardize and validate the cell products. In addition, the process is labor-intensive and costly. Generation of universal off-the-shelf CAR T cells, which can be broadly given to any patient, prepared in advance and ready to use, would be ideal and more cost-effective. Human induced pluripotent stem cells (iPSCs) provide a renewable source of cells that can be genetically engineered and differentiated into immune cells with enhanced anti-tumor cytotoxicity. This review describes basic knowledge of T cell biology, applications in ACT, the use of iPSCs as a new source of T cells and current differentiation strategies used to generate T cells as well as recent advances in genome engineering to produce next-generation off-the-shelf T cells with improved effector functions. We also discuss challenges in the field and future perspectives toward the final universal off-the-shelf immunotherapeutic products.


1994 ◽  
Vol 72 (9-10) ◽  
pp. 349-356 ◽  
Author(s):  
Shirley Gillam

Rubella virus is a small, enveloped, positive-stranded RNA virus in the Togaviridae family and bears similarities to the prototype alphaviruses in terms of its genome organization and strategy for viral gene expression. Despite being an important human pathogen, the cell biology of rubella virus remains poorly characterized. This review focuses on the molecular biology of rubella virus structural proteins, with emphasis on the proteolytic processing and maturation of virus structural proteins, the glycosylation requirement for intracellular transport and function of glycoproteins, and the localization of hemagglutinin- and virus-neutralizing epitopes. A number of significant differences between rubella virus and alphavirus structural protein expression and maturation were discovered.Key words: rubella virus, N-linked glycosylation, epitope mapping, proteolytic processing.


2010 ◽  
Vol 9 (4) ◽  
pp. 453-461 ◽  
Author(s):  
Jia Shi ◽  
William B. Wood ◽  
Jennifer M. Martin ◽  
Nancy A. Guild ◽  
Quentin Vicens ◽  
...  

We have developed and validated a tool for assessing understanding of a selection of fundamental concepts and basic knowledge in undergraduate introductory molecular and cell biology, focusing on areas in which students often have misconceptions. This multiple-choice Introductory Molecular and Cell Biology Assessment (IMCA) instrument is designed for use as a pre- and posttest to measure student learning gains. To develop the assessment, we first worked with faculty to create a set of learning goals that targeted important concepts in the field and seemed likely to be emphasized by most instructors teaching these subjects. We interviewed students using open-ended questions to identify commonly held misconceptions, formulated multiple-choice questions that included these ideas as distracters, and reinterviewed students to establish validity of the instrument. The assessment was then evaluated by 25 biology experts and modified based on their suggestions. The complete revised assessment was administered to more than 1300 students at three institutions. Analysis of statistical parameters including item difficulty, item discrimination, and reliability provides evidence that the IMCA is a valid and reliable instrument with several potential uses in gauging student learning of key concepts in molecular and cell biology.


Sign in / Sign up

Export Citation Format

Share Document