scholarly journals Happiness and Inflammatory Responses to Acute Stress in People With Type 2 Diabetes

2018 ◽  
Vol 53 (4) ◽  
pp. 309-320 ◽  
Author(s):  
Laura Panagi ◽  
Lydia Poole ◽  
Ruth A Hackett ◽  
Andrew Steptoe
2021 ◽  
Vol 9 (6) ◽  
pp. 1211
Author(s):  
Mahnaz Norouzi ◽  
Shaghayegh Norouzi ◽  
Alistaire Ruggiero ◽  
Mohammad S. Khan ◽  
Stephen Myers ◽  
...  

The current outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), termed coronavirus disease 2019 (COVID-19), has generated a notable challenge for diabetic patients. Overall, people with diabetes have a higher risk of developing different infectious diseases and demonstrate increased mortality. Type 2 diabetes mellitus (T2DM) is a significant risk factor for COVID-19 progression and its severity, poor prognosis, and increased mortality. How diabetes contributes to COVID-19 severity is unclear; however, it may be correlated with the effects of hyperglycemia on systemic inflammatory responses and immune system dysfunction. Using the envelope spike glycoprotein SARS-CoV-2, COVID-19 binds to angiotensin-converting enzyme 2 (ACE2) receptors, a key protein expressed in metabolic organs and tissues such as pancreatic islets. Therefore, it has been suggested that diabetic patients are more susceptible to severe SARS-CoV-2 infections, as glucose metabolism impairments complicate the pathophysiology of COVID-19 disease in these patients. In this review, we provide insight into the COVID-19 disease complications relevant to diabetes and try to focus on the present data and growing concepts surrounding SARS-CoV-2 infections in T2DM patients.


2016 ◽  
Vol 21 (9) ◽  
pp. 2085-2097 ◽  
Author(s):  
Angela Bermudez-Millan ◽  
Kristina P Schumann ◽  
Richard Feinn ◽  
Howard Tennen ◽  
Julie Wagner

2021 ◽  
Vol 15 ◽  
pp. 117793222110126
Author(s):  
PO Isibor ◽  
PA Akinduti ◽  
OS Aworunse ◽  
JO Oyewale ◽  
O Oshamika ◽  
...  

Diet plays an essential role in human development and growth, contributing to health and well-being. The socio-economic values, cultural perspectives, and dietary formulation in sub-Saharan Africa can influence gut health and disease prevention. The vast microbial ecosystems in the human gut frequently interrelate to maintain a healthy, well-coordinated cellular and humoral immune signalling to prevent metabolic dysfunction, pathogen dominance, and induction of systemic diseases. The diverse indigenous diets could differentially act as biotherapeutics to modulate microbial abundance and population characteristics. Such modulation could prevent stunted growth, malnutrition, induction of bowel diseases, attenuated immune responses, and mortality, particularly among infants. Understanding the associations between specific indigenous African diets and the predictability of the dynamics of gut bacteria genera promises potential biotherapeutics towards improving the prevention, control, and treatment of microbiome-associated diseases such as cancer, inflammatory bowel disease, obesity, type 2 diabetes, and cardiovascular disease. The dietary influence of many African diets (especially grain-base such as millet, maize, brown rice, sorghum, soya, and tapioca) promotes gut lining integrity, immune tolerance towards the microbiota, and its associated immune and inflammatory responses. A fibre-rich diet is a promising biotherapeutic candidate that could effectively modulate inflammatory mediators’ expression associated with immune cell migration, lymphoid tissue maturation, and signalling pathways. It could also modulate the stimulation of cytokines and chemokines involved in ensuring balance for long-term microbiome programming. The interplay between host and gut microbial digestion is complex; microbes using and competing for dietary and endogenous proteins are often attributable to variances in the comparative abundances of Enterobacteriaceae taxa. Many auto-inducers could initiate the process of quorum sensing and mammalian epinephrine host cell signalling system. It could also downregulate inflammatory signals with microbiota tumour taxa that could trigger colorectal cancer initiation, metabolic type 2 diabetes, and inflammatory bowel diseases. The exploitation of essential biotherapeutic molecules derived from fibre-rich indigenous diet promises food substances for the downregulation of inflammatory signalling that could be harmful to gut microbiota ecological balance and improved immune response modulation.


2015 ◽  
Vol 16 (4) ◽  
pp. 273-280
Author(s):  
Nada Pejnovic

AbstractGalectin-3 is an important regulator of inflammation and acts as a receptor for advanced-glycation (AGE) and lipoxidation end-products (ALE). Evidence indicates a significant upregulation in circulating levels and visceral adipose tissue production of Galectin-3 in obesity and type 2 diabetes. Recent studies demonstrate development of obesity and dysregulation of glucose metabolism in Galectin-3 “knockout” (KO) mice, which also develop accelerated and more severe pathology in models of atherosclerosis and metabolically-induced kidney damage. Thus, evidence that Galectin-3 is an important player in metabolic disease is accumulating. This review discusses current evidence on the connection between Galectin-3 and metabolic disease, focusing on mechanisms by which this galectin modulates adiposity, glucose metabolism and obesity-associated inflammatory responses.


2020 ◽  
Vol 8 (1) ◽  
pp. e001009 ◽  
Author(s):  
Xuanxin Yang ◽  
Rongshuai Yang ◽  
Min Chen ◽  
Qingde Zhou ◽  
Yingying Zheng ◽  
...  

ObjectiveThe present study focused on the development of a poloxamer 407 thermosensitive hydrogel loaded with keratinocyte growth factor-2 (KGF-2) and fibroblast growth factor-21 (FGF-21) as a therapeutic biomaterial in a scald-wound model of type-2 diabetes in Goto-Kakizaki (GK) rats.Research design and methodsIn this study, a poloxamer 407 thermosensitive hydrogel loaded with KGF-2 and/or FGF-21 was prepared and its physical and biological properties were characterized. The repairing effects of this hydrogel were investigated in a scald-wound model of type-2 diabetes in GK rats. The wound healing rate, epithelialization, and formation of granulation tissue were examined, and biomarkers reflecting regulation of proliferation and inflammation were quantified by immunostaining and Western blotting. T tests and analyses of variance were used for statistical analysis via Graphpad Prism V.6.0.ResultsA 17.0% (w/w) poloxamer 407 combined with 1.0% (w/w) glycerol exhibited controlled release characteristics and a three-dimensional structure. A KGF-2/FGF-21 poloxamer hydrogel promoted cellular migration without apoptosis. This KGF-2/FGF-21 poloxamer hydrogel also accelerated wound healing of scalded skin in GK rats better than that of a KGF-2 or FGF-21 hydrogel alone due to accelerated epithelialization, formation of granulation tissue, collagen synthesis, and angiogenesis via inhibition of inflammatory responses and increased expression of alpha-smooth muscle actin (α-SMA), collagen III, pan-keratin, transforming growth factor-β (TGF-β), vascular endothelial growth factor (VEGF), and CD31.ConclusionsA KGF-2/FGF-21 poloxamer hydrogel accelerated wound healing of scalded skin in GK rats, which was attributed to a synergistic effect of KGF-2-mediated cellular proliferation and FGF-21-mediated inhibition of inflammatory responses. Taken together, our findings provide a novel and potentially important insight into improving wound healing in patients with diabetic ulcers.


2015 ◽  
Vol 77 (4) ◽  
pp. 458-466 ◽  
Author(s):  
Ruth A. Hackett ◽  
Antonio I. Lazzarino ◽  
Livia A. Carvalho ◽  
Mark Hamer ◽  
Andrew Steptoe

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Karina Braga Gomes ◽  
Kathryna Fontana Rodrigues ◽  
Ana Paula Fernandes

Several studies have demonstrated that chronic and low-grade inflammation is closely linked to type 2 diabetes mellitus. The associated mechanisms are related to synthesis and release of proinflammatory and anti-inflammatory cytokines, mainly by the adipose tissue. Moreover, there are evidences that cytokines and adhesion molecules are important for development of diabetic nephropathy. Among the cytokines associated with inflammatory responses in type 2 diabetes mellitus, the transforming growth factor-β (TGF-β) has been recognized as a central player in the diabetic nephropathy being involved in the development of glomerulosclerosis and interstitial fibrosis, as observed in the course of end-stage renal disease. Although TGF-β1 is classically an anti-inflammatory immune mediator it has been shown that in the presence of IL-6, which increases before the onset of T2D, TGF-β1 favors the differentiation of T helper 17 (Th17) cells that are activated in many pro-inflammatory conditions. Since TGF-β1 mRNA and consequently serum TGF-β1 levels are under genetic control, this review aims to discuss the relationship of TGF-β1 levels and polymorphisms in the development of nephropathy in type 2 diabetes mellitus.


2020 ◽  
Vol 17 (6) ◽  
pp. 147916412097089
Author(s):  
Fotis Tsetsos ◽  
Athanasios Roumeliotis ◽  
Xanthippi Tsekmekidou ◽  
Sophia Alexouda ◽  
Stefanos Roumeliotis ◽  
...  

Background: Approximately one third of type 2 diabetes mellitus (T2DM) cases present with diabetic nephropathy (DN), the leading cause of end-stage renal disease. Inflammation plays an important role in T2DM disease and DN pathogenesis. NLRP3 inflammasomes are complexes that regulate interleukin-1B (IL-1B) and IL-18 secretion, both involved in inflammatory responses. Activation of NLRP3 is associated with DN onset and progression. Here, we explore whether DN is associated with variants in genes encoding key members of the NLRP3 inflammasome pathway. Methods: Using genome-wide association data, we performed a pilot case-control association study, between 101 DN-T2DM and 185 non-DN-T2DM cases from the Hellenic population across six NLRP3 inflammasome pathway genes. Results: Three common CARD8 variants confer decreased risk for DN, namely rs11665831 (OR = 0.62, p = 0.016), rs11083925 (OR = 0.65, p = 0.021), and rs2043211 (OR = 0.66, p = 0.026), independent of sex or co-inheritance with an IL-1B variant. Conclusion: CARD8 acts as an NLRP3, NF-κB and caspase-1 inhibitor; perhaps, alterations in the cross-talk between CARD8, NF-κB, and NLRP3, which could affect the pro-inflammatory environment in T2DM, render diabetic carriers of certain common CARD8 variants potentially less likely to develop T2DM-related pro-inflammatory responses followed by DN. These preliminary, yet novel, observations will require validation in larger cohorts from several ethnic groups.


Sign in / Sign up

Export Citation Format

Share Document