scholarly journals Effect of 6 dietary fatty acids on the postprandial lipid profile, plasma fatty acids, lipoprotein lipase, and cholesterol ester transfer activities in healthy young men

2001 ◽  
Vol 73 (2) ◽  
pp. 198-208 ◽  
Author(s):  
Tine Tholstrup ◽  
Brittmarie Sandström ◽  
Anette Bysted ◽  
Gunhild Hølmer
Kidney ◽  
2010 ◽  
Vol 19 (6) ◽  
pp. 316-323 ◽  
Author(s):  
Manal Fuad Elshamaa ◽  
Samar Mohamed Sabry ◽  
Eman Ahmed Elghoroury ◽  
Gamila Soliman El-Saaid ◽  
Dina Kandil

1998 ◽  
Vol 80 (6) ◽  
pp. 495-502 ◽  
Author(s):  
Barbara A. Fielding ◽  
Keith N. Frayn

Lipoprotein lipase (EC 3.1.1.34; LPL) is a key enzyme regulating the disposal of lipid fuels in the body. It is expressed in a number of peripheral tissues including adipose tissue, skeletal and cardiac muscle and mammary gland. Its role is to hydrolyse triacylglycerol (TG) circulating in the TG-rich lipoprotein particles in order to deliver fatty acids to the tissue. It appears to act preferentially on chylomicron-TG, and therefore may play a particularly important role in regulating the disposition of dietary fatty acids. LPL activity is regulated according to nutritional state in a tissue-specific manner according to the needs of the tissue for fatty acids. For instance, it is highly active in lactating mammary gland; in white adipose tissue it is activated in the fed state and suppressed during fasting, whereas the reverse is true in muscle. Such observations have led to the view of LPL as a metabolic gatekeeper, especially for dietary fatty acids. However, closer inspection of its action in white adipose tissue reveals that this picture is only partially true. Normal fat deposition in adipose tissue can occur in the complete absence of LPL, and conversely, if LPL activity is increased by pharmacological means, increased fat storage does not necessarily follow. LPL appears to act as one member of a series of metabolic steps which are regulated in a highly coordinated manner. In white adipose tissue, it is clear that there is a major locus of control of fatty acid disposition downstream from LPL. This involves regulation of the pathway of fatty acid uptake and esterification, and appears to be regulated by a number of factors including insulin, acylation-stimulating protein and possibly leptin.


Nutrients ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1372
Author(s):  
Carla Harris ◽  
Andrea von Berg ◽  
Dietrich Berdel ◽  
Carl-Peter Bauer ◽  
Tamara Schikowski ◽  
...  

The role of consuming different types of fatty acids (FA) at the expense of carbohydrates (CHO), on the blood lipid profile of adolescents is largely unknown, as is the modulating effect of different levels of physical activity (PA). Children from the GINIplus and LISA birth cohorts, with complete data on dietary FA (assessed by food-frequency questionnaires), objectively-measured PA (assessed by accelerometers) and blood lipids (lipoprotein cholesterol and triglycerides) at age 15 years, were included (N = 837). Sex-stratified associations between dietary FA and blood lipids were assessed by linear regression in substitution models which represented isocaloric replacements of CHO with saturated FA (SFA), monounsaturated FA (MUFA), n-3 polyunsaturated FA (PUFA) or n-6 PUFA. To assess the interactions with PA, analyses were then performed stratified by tertiles of different PA levels (sedentary, lifestyle, moderate-to-vigorous (MVPA)). Both sexes presented a significant inverse association between MUFA and triglycerides, and females a direct association between n-3 PUFA and high-density lipoprotein. Stratifying by PA tertiles, associations were mainly restricted to participants with the lowest levels of lifestyle PA, or the highest time spent sedentary. The effects of dietary FA on the lipid profile vary in an activity-specific manner, emphasizing possible synergistic roles of diet and PA.


1993 ◽  
Vol 70 (3) ◽  
pp. 727-736 ◽  
Author(s):  
M. C. Murphy ◽  
A. Zampelas ◽  
S. M. Puddicombe ◽  
N. P. Furlonger ◽  
L. M. Morgan ◽  
...  

Although there have been a number of studies of effects of diet and hormones on lipoprotein lipase (EC 3.1.1.34; LPL) activity and levels of LPL mRNA (Raynolds et al. 1990), there have been no studies which have investigated effects of different dietary fatty acids on LPL gene expression. In the present study male Wistar Albino rats were pair-fed diets containing 50 g fat/kg of different fatty acid composition for 2 weeks. The diets fed were (1) a mixed oil (450 g saturated fatty acids, 420 g monounsaturated fatty acids, 130 g polyunsaturated fatty acids/kg; n 8), (2) maize oil (n 8), or (3) fish oil (n 8). Animals were killed, RNA was extracted from liver and perirenal and epididymal fat pads, and analysed by ‘Northern methodology’. Samples were hybridized to a human cDNA probe for LPL (Gotoda et al. 1989). Two transcripts were identified in epididymai and perirenal adipose tissue which were approximately 3·7 and 1·7 kb in size. The results suggested that (1) fish oil-fed animals had significantly greater production of LPL mRNA in epididymai adipose tissue compared with maize oil-fed animals (P < 0·05), (2) maize oil-fed animals had significantly greater production of LPL mRNA in perirenal fat compared with the other dietary groups (P < 0·05), (3) expression in the liver was not significant. Rats fed on a fish oil diet had significantly reduced plasma triacylglycerol concentrations compared with the mixed-oil group (P < 0·05), but there were no significant differences in plasma cholesterol. The differences in LPL could not be explained directly by the changes in plasma immunoreactive-insulin and glucose-dependent insulinotrophic polypeptide levels in the three groups.


Sign in / Sign up

Export Citation Format

Share Document