scholarly journals Unfavorable effect of type 1 and type 2 diabetes on maternal and fetal essential fatty acid status: a potential marker of fetal insulin resistance

2005 ◽  
Vol 82 (6) ◽  
pp. 1162-1168 ◽  
Author(s):  
Yoeju Min ◽  
Clara Lowy ◽  
Kebreab Ghebremeskel ◽  
Beverley Thomas ◽  
Brigid Offley-Shore ◽  
...  
Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1746-P
Author(s):  
PATTARA WIROMRAT ◽  
MELANIE CREE-GREEN ◽  
BRYAN C. BERGMAN ◽  
KALIE L. TOMMERDAHL ◽  
AMY BAUMGARTNER ◽  
...  

2021 ◽  
pp. 1-9

1. Abstract Insulin Resistance is the leading cause of Type 2 diabetes mellitus [T2DM] onset. It occurs as a result of disturbances in lipid metabolism and increased levels of circulating free fatty acids [FFAs]. FFAs accumulate within the insulin sensitive tissues such as muscle, liver and adipose tissues exacerbating different molecular mechanisms. Increased fatty acid flux has been documented to be strongly associated with insulin resistant states and obesity causing inflammation that eventually causes type 2-diabetes development. FFAs appear to cause this defect in glucose transport by inhibiting insulin –stimulated tyrosine phosphorylation of insulin receptor substrate-1 [IRS-1] and IRS-1 associated phosphatidyl-inositol 3-kinase activity. A number of different metabolic abnormalities may increase intramyocellular or intrahepatic fatty acid metabolites that induce insulin resistance through different cellular mechanisms. The current review point out the link between enhanced FFAs flux and activation of PKC and how it impacts on both the insulin signaling in muscle and liver as shown from our laboratory data and highlighting the involvement of the inflammatory pathways importance. This embarks the importance of measuring the inflammatory biomarkers in clinical settings.


2006 ◽  
Vol 92 (2) ◽  
pp. 386-395 ◽  
Author(s):  
Arya M. Sharma ◽  
Bart Staels

Abstract Context: Adipose tissue is a metabolically dynamic organ, serving as a buffer to control fatty acid flux and a regulator of endocrine function. In obese subjects, and those with type 2 diabetes or the metabolic syndrome, adipose tissue function is altered (i.e. adipocytes display morphological differences alongside aberrant endocrine and metabolic function and low-grade inflammation). Evidence Acquisition: Articles on the role of peroxisome proliferator-activated receptor γ (PPARγ) in adipose tissue of healthy individuals and those with obesity, metabolic syndrome, or type 2 diabetes were sourced using MEDLINE (1990–2006). Evidence Synthesis: Articles were assessed to provide a comprehensive overview of how PPARγ-activating ligands improve adipose tissue function, and how this links to improvements in insulin resistance and the progression to type 2 diabetes and atherosclerosis. Conclusions: PPARγ is highly expressed in adipose tissue, where its activation with thiazolidinediones alters fat topography and adipocyte phenotype and up-regulates genes involved in fatty acid metabolism and triglyceride storage. Furthermore, PPARγ activation is associated with potentially beneficial effects on the expression and secretion of a range of factors, including adiponectin, resistin, IL-6, TNFα, plasminogen activator inhibitor-1, monocyte chemoattractant protein-1, and angiotensinogen, as well as a reduction in plasma nonesterified fatty acid supply. The effects of PPARγ also extend to macrophages, where they suppress production of inflammatory mediators. As such, PPARγ activation appears to have a beneficial effect on the relationship between the macrophage and adipocyte that is distorted in obesity. Thus, PPARγ-activating ligands improve adipose tissue function and may have a role in preventing progression of insulin resistance to diabetes and endothelial dysfunction to atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document