scholarly journals Fat and fat-free mass index references in children and young adults: assessments along racial and ethnic lines

2020 ◽  
Vol 112 (3) ◽  
pp. 566-575 ◽  
Author(s):  
Roman J Shypailo ◽  
William W Wong

ABSTRACT Background Fat-free mass index (FFMI) and fat mass index (FMI) are superior to BMI and fat percentage in evaluating nutritional status. However, existing references fail to account for racial/ethnic differences in body composition among children. Objectives Our goal was to produce age-based normative references for FFMI and FMI in children for specific racial/ethnic groups. Methods Body composition, weight, and height were measured in 1122 normal healthy children aged 2–21 y. Bone mineral content measured by DXA, total body water by deuterium dilution, and total body potassium by whole-body γ counting were combined to calculate fat-free mass (FFM) and fat mass (FM) using equations based on the Reference Child and Adolescent models. FFMI and FMI were calculated by dividing FFM and FM by height squared, respectively. After outlier removal, the LMS (Lambda-Mu-Sigma) function within R's GAMLSS package was used to produce age-based FFMI and FMI growth curves for black (B), white (W), and Hispanic (H) children for each sex. Combined models were produced in cases where outcomes did not differ by race/ethnicity. Resulting models were compared with previously published FFMI and FMI models. Results FFMI and FMI models based on 1079 children, aged 2–21 y, were created for both sexes. FFMI models for B children showed higher values throughout. W and H children were combined to produce FFMI models for each sex. H boys were modeled individually for FMI, whereas W and B boys were combined. FMI models for girls were created for each race/ethnicity. Models agreed well with those based on children from the United Kingdom of comparable race/ethnicity. Conclusions Race/ethnicity-specific references for FFMI and FMI will increase the accuracy of health and nutrition status assessment in children over race/ethnicity-generic references. The models allow the calculation of SD scores to assess health and nutrition status in children.

2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Maria Nikolova ◽  
Alexander Penkov

AbstractIntroduction:Obesity has been linked with vitamin D deficiency in a number of cross-sectional studies, reviews and meta-analyses. To assess the correlations of plasma 25(OH) vitamin D levels with indices of body composition examined by DXA with an emphasis on lean and bone mass as well as on indices such as android/gynoid fat, appendicular lean mass (ALM) and appendicular lean mass index (ALMI), fat-mass indexes (FMI), fat-free mass indexes (FFMI) and the ALM-to-BMI index.Materials and Methods:62 adult subjects consented to participate – 27 men (43.5 %) and 35 women (56.5 %). Their mean age was 45.3 ± 9.5 years. Fan-beam dual-energy X-ray (DXA) body composition analysis was performed on a Lunar Prodigy Pro bone densitometer with software version 12.30. Vitamin D was measured by electro-hemi-luminescent detection as 25(OH)D Total (ECLIA, Elecsys 2010 analyzer, Roche Diagnostics). Statistical analyses were done using the SPSS 23.0 statistical package.Results:The serum 25(OH)D level was correlated significantly only to the whole body bone mineral content, the appendicular lean mass index (ALMI) and the ALM-to-BMI index, underlining a predominant role for lean and fat-free mass. Vitamin D showed a very weak correlation to % Body Fat and the Fat Mass Index (FMI) in men only. Moreover, the multiple regression equation including the associated parameters could explain only 7 % of the variation in the serum 25(OH)D levels.Discussion:Our conclusion was, that there are differences in the associations of the vitamin D levels with the different body composition indices, but these associations are generally very weak and therefore – negligible.


2003 ◽  
Vol 94 (6) ◽  
pp. 2368-2374 ◽  
Author(s):  
Marjolein Visser ◽  
Marco Pahor ◽  
Frances Tylavsky ◽  
Stephen B. Kritchevsky ◽  
Jane A. Cauley ◽  
...  

Changing body composition has been suggested as a pathway to explain age-related functional decline. No data are available on the expected changes in body composition as measured by dual-energy X-ray absorptiometry (DXA) in a population-based cohort of older persons. Body composition data at baseline, 1-yr follow-up, and 2-yr follow-up was measured by DXA in 2,040 well-functioning black and white men and women aged 70–79 yr, participants of the Health, Aging, and Body Composition Study. After 2 yr, a small decline in total body mass was observed (men: −0.3%, women: −0.4%). Among men, fat-free mass and appendicular lean soft tissue mass (ALST) decreased by −1.1 and −0.8%, respectively, which was masked by a simultaneous increase in total fat mass (+2.0%). Among women, a decline in fat-free mass was observed after 2 yr only (−0.6%) with no change in ALST and body fat mass. After 2 yr, the decline in ALST was greater in blacks than whites. Change in total body mass was associated with change in ALST ( r = +0.58 to +0.70; P < 0.0001). Among participants who lost total body mass, men lost relatively more ALST than women, and blacks lost relatively more ALST than whites. In conclusion, the mean change in body composition after a 1- to 2-yr follow-up was 1–2% with a high interindividual variability. Loss of ALST was greater in men compared with women, and greater in blacks compared with whites, suggesting that men and blacks may be more prone to muscle loss.


2019 ◽  
Vol 4 ◽  
pp. 105 ◽  
Author(s):  
Linda M. O'Keeffe ◽  
Abigail Fraser ◽  
Laura D. Howe

Correlations of body composition with height vary by age and sex during childhood. Standard approaches to accounting for height in measures of body composition (dividing by height (in meters)2) do not take this into account. Using measures of total body mass (TBM), fat mass (FM) and fat free mass (FFM) at ages nine, 11, 13, 15 and 18 years from a longitudinal UK cohort study (ALSPAC), we calculated indices of body composition at each age by dividing measures by height (in meters)2. We then produced age-and sex-specific powers of height using allometric regressions and calculated body composition indices by dividing measures by height raised to these powers. TBM, FM and FFM divided by height2 were correlated with height up-to age 11 in females. In males, TBM and FM divided by height2 were correlated with height up-to age 15 years while FM divided by height2 was correlated with height up-to age 11 years. Indices of body composition using age-and sex-specific powers were not correlated with height at any age. In early life, age-and sex-specific powers of height, rather than height in meters2, should be used to adjust body composition for height when measures of adiposity/mass independent of height are required.


2001 ◽  
Vol 86 (9) ◽  
pp. 4161-4165 ◽  
Author(s):  
Jan P. T. Span ◽  
Gerlach F. F. M. Pieters ◽  
Fred G. J. Sweep ◽  
Ad R. M. M. Hermus ◽  
Anthony G. H. Smals

In GH-deficient adults, rhGH has pronounced effects on total body water, fat free mass, and fat mass. Recently, we observed a gender difference in IGF-I responsivity to rhGH that was sex steroid dependent. The aim of the present study was to assess the effect of rhGH therapy on body composition parameters with due attention to the gender differences in biological responsiveness to rhGH. Forty-four women [36.9 ± 11.9 yr (mean ± sd)] and 33 men (37.2 ± 13.8 yr) with GH deficiency were studied every 6 months during 2 yr. The treatment goal was to achieve IGF-I levels within the age-adjusted normal range. Total body water, fat free mass, and fat mass were measured by bioimpedantiometry. To reach the treatment goal, the daily rhGH dose (IU/kg/d) had to be significantly higher in women than in men at all time intervals. During rhGH therapy, total body water and fat free mass increased significantly in both men and women (P ≤ 0.01 by ANOVA), but changes were more pronounced in men. Fat mass decreased during rhGH treatment and reached its nadir at 6 months, which was more pronounced in men than in women (P = 0.02 by ANOVA). After the initial decrease, fat mass increased again and reached baseline values after 2 yr of treatment. In both men and women, the total body water and fat free mass increases were closely related to the IGF-I increments (P &lt; 0.001 by Pearson’s correlation test). The decrease in fat mass correlated significantly with the increase in IGF-I in men (r = −0.89, P &lt; 0.001), not in women. Confirming our earlier data, IGF-I responsivity to rhGH was significantly higher in men than in women at all time intervals (P &lt; 0.01 by ANOVA). Total body water and fat free mass responsivities were also higher in men than in women (P &lt; 0.01 by ANOVA). In conclusion, gender differences in IGF-I responsivities to rhGH are accompanied by gender differences in the extent of body composition changes to rhGH. Probably because of these gender differences in IGF-I responsivity, the increases of total body water and fat free mass to rhGH replacement were greater in men than in women. Remarkably, however, in men, only total body water and fat free mass responses relative to changes in IGF-I increased during the 2 yr of rhGH therapy (P= 0.02 and 0.01, respectively, by ANOVA). In our opinion, this phenomenon might be explained by the increasing target organ sensitivity to IGF-I over time.


2021 ◽  
Author(s):  
Jaz Lyons-Reid ◽  
Leigh C Ward ◽  
Mya-Thway Tint ◽  
Timothy Kenealy ◽  
Keith M Godfrey ◽  
...  

Abstract Bioelectrical impedance techniques are easy to use and portable tools for assessing body composition. While measurements vary according to standing vs supine position in adults, and fasting and bladder voiding have been proposed as additional important influences, these have not been assessed in young children. Therefore, the influence of position, fasting, and voiding on bioimpedance measurements was examined in children. Bioimpedance measurements (ImpediMed SFB7) were made in 50 children (3.5 years). Measurements were made when supine and twice when standing (immediately on standing and after four minutes). Impedance and body composition were compared between positions, and the effect of fasting and voiding was assessed. Impedance varied between positions, but body composition parameters other than fat mass (total body water, intra- and extra-cellular water, fat-free mass) differed by less than 5%. There were no differences according to time of last meal or void. Equations were developed to allow standing measurements of fat mass to be combined with supine measurements. In early childhood, it can be difficult to meet requirements for fasting, voiding, and lying supine prior to measurement. This study provides evidence to enable standing and supine bioimpedance measurements to be combined in cohorts of young children.


2017 ◽  
Vol 11 (2) ◽  
pp. 15-27
Author(s):  
Tomáš Hadžega ◽  
Václav Bunc

The aim of our observation was to measure selected anthropometric characteristics and to analyze actual body composition in children of younger school age from elementary schools in Prague. The group consisted of a total of 222 probands, boys (n-117) and girls (n-105) aged 8–11 years (average boys age = 9.0 ± 1.0 years, body height = 139.9 ± 8.6 cm, body weight = 32 ± 7.5 kg, BMI = 16.3 ± 2.4 kg.m–2). Average age girls = 8.9 ± 0.9 years, body height = 137.3 ± 8.8 cm, body weight = 30.5 ± 7.3 kg, BMI = 15.9 ± 2.4 kg.m–2). The BIA 2000 M multi-frequency apparatus (whole-body bioimpedance analysis) was used to analyze the body composition. Children of younger school age showed higher TBW values – total body water (boys 65.5 ± 6.0%, girls 66.6 ± 6.5%), low body fat (boys 16.1 ± 2.4%, girls 16.5 ± 2.9%) and higher ECM/BCM coefficients (boys 1.0 ± 0.13, girls 1.02 ± 0.11). The authors draws, attention to the importance of monitoring other body composition parameters. The percentage of fat-free mass (FFM) and the share of segmental distribution of body fat and muscle mass on individual parts of the human body.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jaz Lyons-Reid ◽  
Leigh C. Ward ◽  
Mya-Thway Tint ◽  
Timothy Kenealy ◽  
Keith M. Godfrey ◽  
...  

AbstractBioelectrical impedance techniques are easy to use and portable tools for assessing body composition. While measurements vary according to standing vs supine position in adults, and fasting and bladder voiding have been proposed as additional important influences, these have not been assessed in young children. Therefore, the influence of position, fasting, and voiding on bioimpedance measurements was examined in children. Bioimpedance measurements (ImpediMed SFB7) were made in 50 children (3.38 years). Measurements were made when supine and twice when standing (immediately on standing and after four minutes). Impedance and body composition were compared between positions, and the effect of fasting and voiding was assessed. Impedance varied between positions, but body composition parameters other than fat mass (total body water, intra- and extra-cellular water, fat-free mass) differed by less than 5%. There were no differences according to time of last meal or void. Equations were developed to allow standing measurements of fat mass to be combined with supine measurements. In early childhood, it can be difficult to meet requirements for fasting, voiding, and lying supine prior to measurement. This study provides evidence to enable standing and supine bioimpedance measurements to be combined in cohorts of young children.


2015 ◽  
Vol 45 (1) ◽  
pp. 207-215 ◽  
Author(s):  
Lucia Mala ◽  
Tomas Maly ◽  
František Zahalka ◽  
Vaclav Bunc ◽  
Ales Kaplan ◽  
...  

Abstract The goal of this study was to identify and compare body composition (BC) variables in elite female athletes (age ± years): volleyball (27.4 ± 4.1), softball (23.6 ± 4.9), basketball (25.9 ± 4.2), soccer (23.2 ± 4.2) and handball (24.0 ± 3.5) players. Fat-free mass (FFM), fat mass, percentage of fat mass (FMP), body cell mass (BCM), extracellular mass (ECM), their ratio, the percentage of BCM in FFM, the phase angle (α), and total body water, with a distinction between extracellular (ECW) and intracellular water, were measured using bioimpedance analysis. MANOVA showed significant differences in BC variables for athletes in different sports (F60.256 = 2.93, p < 0.01, η2 = 0.407). The results did not indicate any significant differences in FMP or α among the tested groups (p > 0.05). Significant changes in other BC variables were found in analyses when sport was used as an independent variable. Soccer players exhibited the most distinct BC, differing from players of other sports in 8 out of 10 variables. In contrast, the athletes with the most similar BC were volleyball and basketball players, who did not differ in any of the compared variables. Discriminant analysis revealed two significant functions (p < 0.01). The first discriminant function primarily represented differences based on the FFM proportion (volleyball, basketball vs. softball, soccer). The second discriminant function represented differences based on the ECW proportion (softball vs. soccer). Although all of the members of the studied groups competed at elite professional levels, significant differences in the selected BC variables were found. The results of the present study may serve as normative values for comparison or target values for training purposes.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 309-316 ◽  
Author(s):  
Aleksandra Markova ◽  
Mihail Boyanov ◽  
Deniz Bakalov ◽  
Adelina Tsakova

AbstractBackgroundThis study aims to explore the correlations of body mass index (BMI), waist circumference (WC), waist-to-height ratio (WHtR), waist-to-hip ratio (WHR) and body composition with levels of asymmetric dimethylarginine (ADMA), endothelin 1(ET-1), N-terminal brain natriuretic pro-peptide (NT-proBNP) and calculated cardiovascular risks.Methods102 women and 67 men with type 2 diabetes participated. Serum levels of NT-proBNP were measured by electro-hemi-luminescence while ELISA were used for ADMA and ET-1. Cardiovascular risks were calculated using the Framingham Risk Score (FRS), the UKPDS 2.0 and the ADVANCE risk engines. Statistical analysis was performed on an IBM SPSS 19.0.ResultsThe BMI outperformed all other indices of obesity (WC, WHtR, WHR), as well as body composition parameters (body fat%, fat mass, fat free mass and total body water) in relation to the estimated risks for coronary heart disease and stroke, based on different calculators. The correlations of the obesity indices with the serum cardiovascular biomarkers were not significant except for BMI and fat mass versus ET-1, and for fat free mass and total body water versus ADMA.ConclusionsThe WC, WHR, WHtR, BF%, FM and FFM apparently do not add significant information related to the levels of cardiovascular biomarkers or the calculated CV-risks.


2021 ◽  
Vol 224 (2) ◽  
pp. jeb219543
Author(s):  
Daniella E. Chusyd ◽  
Tim R. Nagy ◽  
Lilian Golzarri-Arroyo ◽  
Stephanie L. Dickinson ◽  
John R. Speakman ◽  
...  

ABSTRACTMany captive Asian elephant populations are not self-sustaining, possibly due in part to obesity-related health and reproductive issues. This study investigated relationships between estimated body composition and metabolic function, inflammatory markers, ovarian activity (females only) and physical activity levels in 44 Asian elephants (n=35 females, n=9 males). Deuterium dilution was used to measure total body water from which fat mass (FM) and fat-free mass (FFM) could be derived to estimate body composition. Serum was analyzed for progestagens and estradiol (females only), deuterium, glucose, insulin and amyloid A. Physical activity was assessed by an accelerometer placed on the elephant's front leg for at least 2 days. Relative fat mass (RFM) – the amount of fat relative to body mass – was calculated to take differences in body size between elephants into consideration. Body fat percentage ranged from 2.01% to 24.59%. Male elephants were heavier (P=0.043), with more FFM (P=0.049), but not FM (P>0.999), than females. For all elephants, estimated RFM (r=0.45, P=0.004) was positively correlated with insulin. Distance walked was negatively correlated with age (r=−0.46, P=0.007). When adjusted for FFM and age (P<0.001), non-cycling females had less fat compared with cycling females, such that for every 100 kg increase in FM, the odds of cycling were 3 times higher (P<0.001). More work is needed to determine what an unhealthy amount of fat is for elephants; however, our results suggest higher adiposity may contribute to metabolic perturbations.


Sign in / Sign up

Export Citation Format

Share Document