scholarly journals The role of the gut microbiome in the association between habitual anthocyanin intake and visceral abdominal fat in population-level analysis

2019 ◽  
Vol 111 (2) ◽  
pp. 340-350 ◽  
Author(s):  
Amy Jennings ◽  
Manja Koch ◽  
Majken K Jensen ◽  
Corinna Bang ◽  
Jan Kassubek ◽  
...  

ABSTRACT Background Flavonoid intake modifies the composition of the gut microbiome, which contributes to the metabolism of flavonoids. Few studies have examined the contribution of the gut microbiome to the health benefits associated with flavonoid intake. Objectives We aimed to examine associations between habitual intakes of flavonoid subclasses and MRI-determined visceral (VAT) and subcutaneous (SAT) adipose tissue. Uniquely, we also identified associations between the aforementioned measurements and gut microbiome composition sequenced from 16S ribosomal RNA genes. Methods We undertook cross-sectional analyses of 618 men and women (n = 368 male), aged 25–83 y, from the PopGen cohort. Results Higher intake of anthocyanins was associated with lower amounts of VAT [tertile (T)3-T1:  −0.49 dm3; β: −8.9%; 95% CI: −16.2%, −1.1%; P = 0.03] and VAT:SAT ratio (T3-T1: −0.04; β: −7.1%; 95% CI: −13.5%, −0.3%; P = 0.03). Higher intakes of anthocyanin-rich foods were also inversely associated with VAT [quantile (Q)4-Q1: −0.39 dm3; β: −9.9%; 95% CI: −17.4%, −1.6%; P = 0.02] and VAT:SAT ratio (Q4-Q1: −0.04; β: −6.5%; 95% CI: −13.3%, −0.9%; P = 0.03). Participants with the highest intakes of anthocyanin-rich foods also had higher microbial diversity (Q4-Q1: β: 0.18; 95% CI: 0.06, 0.31; P < 0.01), higher abundances of Clostridiales (Q4-Q1: β: 449; 95% CI: 96.3, 801; P = 0.04) and Ruminococcaceae (Q4-Q1: β: 313; 95% CI: 33.6, 591; P = 0.04), and lower abundance of Clostridium XIVa (Q4-Q1: β: −41.1; 95% CI: −72.4, −9.8; P = 0.04). Participants with the highest microbial diversity, abundances of Clostridiales and Ruminococcaceae, and lower abundance of Clostridium XIVa had lower amounts of VAT. Up to 18.5% of the association between intake of anthocyanin-rich foods and VAT could be explained by the gut microbiome. Conclusions These novel data suggest that higher microbial diversity and abundance of specific taxa in the Clostridiales order may contribute to the association between higher intake of anthocyanins and lower abdominal adipose tissue.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aaro Salosensaari ◽  
Ville Laitinen ◽  
Aki S. Havulinna ◽  
Guillaume Meric ◽  
Susan Cheng ◽  
...  

AbstractThe collection of fecal material and developments in sequencing technologies have enabled standardised and non-invasive gut microbiome profiling. Microbiome composition from several large cohorts have been cross-sectionally linked to various lifestyle factors and diseases. In spite of these advances, prospective associations between microbiome composition and health have remained uncharacterised due to the lack of sufficiently large and representative population cohorts with comprehensive follow-up data. Here, we analyse the long-term association between gut microbiome variation and mortality in a well-phenotyped and representative population cohort from Finland (n = 7211). We report robust taxonomic and functional microbiome signatures related to the Enterobacteriaceae family that are associated with mortality risk during a 15-year follow-up. Our results extend previous cross-sectional studies, and help to establish the basis for examining long-term associations between human gut microbiome composition, incident outcomes, and general health status.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Tariful Islam ◽  
Iurii Koboziev ◽  
Shane Scoggin ◽  
Latha Ramalingam ◽  
Naima Moustaid-Moussa

Abstract Objectives Curcumin, a traditionally used spice in Asia has several health-protecting effects. However, its role on gut microbiota and obesity-associated inflammation is still poorly understood. The objective of this study was to determine whether the protective effects of curcumin in high fat diet (HFD)-induced obesity are mediated by reduced white adipose tissue (WAT) inflammation and changes in gut bacteria. Methods Male B6 mice were fed a HFD (45% kcal fat) or HFD supplemented with 0.4% (w/w) curcumin (HFC) for thirteen weeks. Body weight, adiposity, glucose and, insulin tolerances, and serum triglycerides, insulin, leptin, resistin levels were measured. Gut microbiome composition was determined by 16S RNA metagenomics sequencing. Expression of inflammation-related genes in WAT was measured by qRT-PCR. Macrophage contents in WAT were evaluated by galectin-3 immunohistochemical staining. Results Pro-inflammatory transcription factor nuclear factor NF-kappa-B p65 subunit (p65) and toll-like receptor-4 (TLR-4) gene expression was downregulated in HFC group compared to HFD mice. Furthermore, curcumin reduced total macrophage infiltration in WAT in HFC mice compared to HFD group. Expression of both M1 (CD80, CD38) and M2 (Arginase-1) associated genes was decreased. The relative abundance of bacteria representing the Clostridium genus, which contains numerous short-chain fatty acid (SCFA) producing species, was increased by the curcumin supplement. Conclusions Curcumin exerts protective effects in dietary obesity, in part through downregulation of adipose tissue inflammation which may be due to the production of SCFA and, possibly other curcumin metabolites by gut microflora. Funding Sources Startup funds and Come N Go award from the College of Human Sciences at Texas Tech University.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Roma Pahwa ◽  
Miriam Balderas ◽  
Ishwarlal Jialal ◽  
Xinpu Chen ◽  
Ruth Ann Luna ◽  
...  

Aims. Diabetes is a proinflammatory state, evidenced by increased pattern recognition receptors and the inflammasome (NOD-like receptor family pyrin domain (NLRP)) complex. Recent reports have elucidated the role of the gut microbiome in diabetes, but there is limited data on the gut microbiome in NLRP-KO mice and its effect on diabetes-induced inflammation. Methods. Gut microbiome composition and biomarkers of inflammation (IL-18, serum amyloid A) were assessed in streptozotocin- (STZ-) induced diabetic mice on a NLRP3-knockout (KO) background versus wild-type diabetic mice. Results. SAA and IL-18 levels were significantly elevated in diabetic mice (STZ) compared to control (WT) mice, and there was a significant attenuation of inflammation in diabetic NLRP3-KO mice (NLRP3-KO STZ) compared to control mice (p<0.005). Principal coordinate analysis clearly separated controls, STZ, and NLRP3-KO STZ mice. Among the different phyla, there was a significant increase in the Firmicutes : Bacteroidetes ratio in the diabetic group compared to controls. When compared to the WT STZ group, the NLRP3-KO STZ group showed a significant decrease in the Firmicutes : Bacteroidetes ratio. Together, these findings indicate that interaction of the intestinal microbes with the innate immune system is a crucial factor that could modify diabetes and complications.


2018 ◽  
Author(s):  
Sudarshan A. Shetty

AbstractPopulation-level microbial profiling allows for identifying the overarching features of the microbiome. Knowledge of population specific base-line gut microbiome features is important due to the widely reported impact of geography, lifestyle and dietary patterns on the microbiome composition, structure and function. Here, the gut microbiota of more than 1000 subjects across the length and breadth of India is presented. The publicly available 16S rRNA gene profiling data of faecal microbiota from the Landscape Of Gut Microbiome - Pan-India Exploration (LogMPIE) study representing 14 major cities, covering populations from northern, southern, eastern and western part of India analyzed. Majority of the dominant OTUs belonged to the Firmicutes, Bacteroidetes and Proteobacteria phyla. The rarer fraction was comprised of OTUs mainly from the phyla Verrucomicrobia and Spirochaetes. The median core size was estimated to consist of 12 OTUs (>80% prevalence) dominated by representing genera Prevotella, Faecalibacterium, Bacteroides, Roseburia, Megasphaera, Eubacterium and Gemmiger. Geographic location explained majority of the variation in the gut microbiota community structure. The observations of the present study support the previous reports of Prevotella dominance in the Indian population. The Prevotella/Bacteroides ratio was high for the overall population irrespective of geographic location and did not correlate with BMI or age of the participants. Despite a rapid transition towards a western lifestyle, high prevalence of Treponema in the Indian gut microbiota suggests that the urban population still harbors signatures of the traditional gut microbiome. The results presented here improve the knowledge of baseline microbiota in the Indian population across the length and breadth of the country. This study provides a base for future studies which need to incorporate numerous other confounding factors and their impact on the observed characteristics of the Indian gut microbiome.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1734
Author(s):  
Janice Mayne ◽  
Xu Zhang ◽  
James Butcher ◽  
Krystal Walker ◽  
Zhibin Ning ◽  
...  

Salmonella infections (salmonellosis) pose serious health risks to humans, usually via food-chain contamination. This foodborne pathogen causes major food losses and human illnesses, with significant economic impacts. Overuse of antibiotics in the food industry has led to multidrug-resistant strains of bacteria, and governments are now restricting their use, leading the food industry to search for alternatives to secure food chains. Bacteriophages, viruses that infect and kill bacteria, are currently being investigated and used as replacement treatments and prophylactics due to their specificity and efficacy. They are generally regarded as safe alternatives to antibiotics, as they are natural components of the ecosystem. However, when specifically used in the industry, they can also make their way into humans through our food chain or exposure, as is the case for antibiotics. In particular, agricultural workers could be repeatedly exposed to bacteriophages supplemented to animal feeds. To our knowledge, no studies have investigated the effects of such exposure to bacteriophages on the human gut microbiome. In this study, we used a novel in-vitro assay called RapidAIM to investigate the effect of a bacteriophage mixture, BAFASAL®, used in poultry farming on five individual human gut microbiomes. Multi-omics analyses, including 16S rRNA gene sequencing and metaproteomic, revealed that ex-vivo human gut microbiota composition and function were unaffected by BAFASAL® treatment, providing an additional measure for its safety. Due to the critical role of the gut microbiome in human health and the known role of bacteriophages in regulation of microbiome composition and function, we suggest assaying the impact of bacteriophage-cocktails on the human gut microbiome as a part of their safety assessment.


Author(s):  
Ifeanyi O. Oshim ◽  
Nneka R. Agbakoba ◽  
Evelyn U. Urama ◽  
Oluwayemisi Odeyemi ◽  
Nkechi A. Olise ◽  
...  

Microbiome that reside in the human gut are key contributors to host metabolism and are considered potential sources of novel therapeutics in metabolic disorders. This review discusses the role of gut microbiome in the pathogenesis of obesity, type 2 diabetes mellitus (T2DM), chronic kidney disease and cardiovascular disease. Gut microbiome remains quite stable, although changes take place between birth and adulthood due to external influences, such as diet, disease and environment. Understanding these changes is important to predict diseases and develop therapies. In gut heamostasis, Gut microbiome converts high fibres intake into short-chain fatty acids like butyrate, propionate and acetate which normalize intestinal permeability and alter de novo lipogenesis and gluconeogenesis through reduction of free fatty acid production by visceral adipose tissue. This effect contributes to reduce food intake and to improve glucose metabolism. Propionate can also bind to G protein coupled receptors (GPR)-43 expressed on lymphocytes in order to maintain appropriate immune defence. Butyrate activates peroxisome proliferator-activated receptor-γ (PPAR-γ) leading to beta-oxidation and oxygen consumption, a phenomenon contributing to maintain anaerobic condition in the gut lumen. In contrast, diets most especially western diet consisting among others of high fat and high salt content has been reported to cause gut dysbiosis. This alteration of gut microbiome result to chronic bacterial translocation and increased intestinal permeability that can drive a systemic inflammation leading to macrophage influx into visceral adipose tissue, activation of hepatic kuffer cells and insulin resistance in type 2 diabetes. This effect contributes to lower mucus thickness, decrease butyrate and propionate producing bacteria, L-cells secrete less gut peptides, lack of PPAR-γ activation lead to higher oxygen available for the microbiome at the proximity of the mucosa and increases the proliferation of Enterobacteriaceae with commensurate increase in opportunistic pathogens. However, Gut microbiome are major biomarker for early prognosis of diabetes and other metabolic disorders.


Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Mariona Pinart ◽  
Andreas Dötsch ◽  
Kristina Schlicht ◽  
Matthias Laudes ◽  
Jildau Bouwman ◽  
...  

Whether the gut microbiome in obesity is characterized by lower diversity and altered composition at the phylum or genus level may be more accurately investigated using high-throughput sequencing technologies. We conducted a systematic review in PubMed and Embase including 32 cross-sectional studies assessing the gut microbiome composition by high-throughput sequencing in obese and non-obese adults. A significantly lower alpha diversity (Shannon index) in obese versus non-obese adults was observed in nine out of 22 studies, and meta-analysis of seven studies revealed a non-significant mean difference (−0.06, 95% CI −0.24, 0.12, I2 = 81%). At the phylum level, significantly more Firmicutes and fewer Bacteroidetes in obese versus non-obese adults were observed in six out of seventeen, and in four out of eighteen studies, respectively. Meta-analyses of six studies revealed significantly higher Firmicutes (5.50, 95% 0.27, 10.73, I2 = 81%) and non-significantly lower Bacteroidetes (−4.79, 95% CI −10.77, 1.20, I2 = 86%). At the genus level, lower relative proportions of Bifidobacterium and Eggerthella and higher Acidaminococcus, Anaerococcus, Catenibacterium, Dialister, Dorea, Escherichia-Shigella, Eubacterium, Fusobacterium, Megasphera, Prevotella, Roseburia, Streptococcus, and Sutterella were found in obese versus non-obese adults. Although a proportion of studies found lower diversity and differences in gut microbiome composition in obese versus non-obese adults, the observed heterogeneity across studies precludes clear answers.


Author(s):  
Zoe J. Zreloff ◽  
Danielle Lange ◽  
Suzanne D. Vernon ◽  
Martha R. Carlin ◽  
Raul de Jesus Cano

Background. Inferior quality of biological material compromises data, slows discovery, and wastes research funds. The gut microbiome plays a critical role in human health and disease, yet little attention has been given to optimizing collection and processing methods of human stool. Methods. We collected the entire bowel movement from 2 healthy volunteers: one to examine stool sample heterogeneity and one to test stool sample handling parameters. Sequencing and bi-oinformatic analyses were used to examine the microbiome composition. Results. The microbiome profile varied depending on where the subsample was obtained from the stool. The exterior cortex of the stool was rich in specific phyla and deficient in others while the interior core of the stool revealed opposite microbiome profiles. Sample processing also re-sulted in varying microbiome profiles. Homogenization and stabilization at 4&deg;C gave superior microbial diversity profiles compared to the fresh or frozen subsamples of the same stool sample. Bacterial proliferation continued in the fresh subsample when processed at ambient temperature. Bacteroidetes proliferated and Firmicutes diminished during the 30-minute processing of fresh sample. The frozen sample had good overall diversity but Proteobacteria diminished likely be-cause of the freeze/thaw. Conclusions. The microbiome profile is specific to the section of the stool being sampled. Stool sample collection, homogenization, and stabilization at 4&deg;C for 24 hours provides a &ldquo;neat&rdquo;, high-quality sample of sufficient quantity that can be banked into aliquots with nearly identical microbial diversity profiles. This collection pipeline is essential to accelerate our understanding of the gut microbiome in health and disease.


Sign in / Sign up

Export Citation Format

Share Document