scholarly journals Comparison of inhibition of N2 fixation and ureide accumulation under water deficit in four common bean genotypes of contrasting drought tolerance

2014 ◽  
Vol 113 (6) ◽  
pp. 1071-1082 ◽  
Author(s):  
I. Coleto ◽  
M. Pineda ◽  
A. P. Rodiño ◽  
A. M. De Ron ◽  
J. M. Alamillo
Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 371 ◽  
Author(s):  
Isabella Mendonça Arruda ◽  
Vânia Moda-Cirino ◽  
Alessandra Koltun ◽  
Douglas Mariani Zeffa ◽  
Getúlio Takashi Nagashima ◽  
...  

Water stress is one of the main limiting factors for common bean crops, negatively affecting grain yield and seed quality. Thus, the objective of this study was to evaluate the inheritance of agromorphological and physiological traits related to drought tolerance in order to identify promising combinations. The experiment was carried out in a greenhouse with a partial diallel scheme between three drought-tolerant genotypes (IAPAR 81, BAT 477. and SEA 5), and nine cultivars widely grown in Brazil (BRS Estilo, IAC Alvorada, IPR Campos Gerais, IPR Uirapuru, IPR Nhambu, BRS Esteio, IPR Garça, BRS Radiante, and DRK 18), in a randomized block design with four replicates. The plants were grown in pots with substrate under 80% of pot capacity until they reached the stage R5, when water supply was restricted to 30% for 20 days in the pots under stress treatment. A wide variability for the agromorphological and physiological traits was observed. Water deficit reduced plant performance for most agromorphological traits and altered their physiological metabolism. Additive and non-additive effects are involved in the genetic control of the majority of agromorphological and physiological traits both under water stress and control (well-watered) conditions. The parental genotypes BAT 477 (group I) and IAC Alvorada, IPR Uirapuru, and BRS Esteio (group II) may be included in breeding programs aiming at improving drought tolerance in common bean since they present high positive general combining abilities for agromorphological traits. The crosses IAPAR 81 × IPR Campos Gerais, and SEA 5 × BRS Radiante resulted in the best combinations considering grain yield per plant and total dry biomass, when cultivated under water deficit.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 217
Author(s):  
Leonardo Godoy Androcioli ◽  
Douglas Mariani Zeffa ◽  
Daniel Soares Alves ◽  
Juarez Pires Tomaz ◽  
Vânia Moda-Cirino

Water deficit is considered one of the most limiting factors of the common bean. Understanding the adaptation mechanisms of the crop to this stress is fundamental for the development of drought-tolerant cultivars. In this sense, the objective of this study was to analyze the influence of water deficit on physiological and morphoagronomic traits of common bean genotypes with contrasting drought tolerance, aiming to identify mechanisms associated with tolerance to water deficit. The experiment was carried out in a greenhouse, arranged in a randomized complete block 4 × 2 factorial design, consisting of four common bean genotypes under two water regimes (with and without water stress), with six replications. The morphoagronomic and physiological traits of four cultivars, two drought-tolerant (IAPAR 81 and BAT 477) and two drought-sensitive (IAC Tybatã and BRS Pontal), were measured for 0, 4, 8, and 12 days, under water deficit, initiated in the phenological stage R5. Water-deficit induced physiological changes in the plants, altering the evaluated morphoagronomic traits. The drought tolerance of cultivar BAT 477 is not only a direct result of the low influence of water deficit on its yield components, but also a consequence of the participation of multiple adaptive physiological mechanisms, such as higher intrinsic water use efficiency, net photosynthesis rate, transpiration, carboxylation efficiency, stomatal conductance, and intracellular concentration of CO2 under water deficit conditions. On the other hand, cultivar IAPAR 81 can be considered drought-tolerant for short water-deficit periods only, since after the eighth day of water deficit, the physiological activities decline drastically.


2019 ◽  
Vol 43 ◽  
Author(s):  
João Guilherme Ribeiro Gonçalves ◽  
Estela Reis de Andrade ◽  
Daiana Alves da Silva ◽  
Jose Antonio de Fátima Esteves ◽  
Alisson Fernando Chiorato ◽  
...  

ABSTRACT Given the impact of climate issues and their direct influence on agricultural production, the aim of this study was to identify superior genotypes of dry edible common bean under water deficit. Thus, 30 common bean genotypes were evaluated under controlled greenhouse conditions in a randomized block experimental design with split plots and four replications; the plots consisted of the water treatments (irrigated and water deficit) and the split plots consisted of the genotypes. The results showed genetic variability among the accessions evaluated, and in spite of significant reduction in grain yield and stomatal conductance under water deficit, these two traits showed significant, positive correlation and are able to be applied in early selection of genotypes under this stress condition. Another important response was in relation to the genotypes SER-16, SEN 92, FT Paulistinha, Carioca Precoce, IAC Imperador, and SXB 410, which showed the best yield performances in the two water treatments applied. They can be widely used in breeding programs for development of new cultivars, especially aiming at drought tolerance.


2021 ◽  
Author(s):  
Ruby Antonieta Vega Ravello ◽  
Cynthia de Oliveira ◽  
Josimar Lessa ◽  
Lissa Vasconcellos Vilas Boas ◽  
Evaristo Mauro de Castro ◽  
...  

2006 ◽  
Vol 18 (3) ◽  
pp. 407-411 ◽  
Author(s):  
Mauro G. dos Santos ◽  
Rafael V. Ribeiro ◽  
Marcelo G. Teixeira ◽  
Ricardo F. de Oliveira ◽  
Carlos Pimentel

Two common bean cultivars were grown in pots under greenhouse conditions. Plants were submitted to a foliar Pi spray two days before suspending irrigation, what enhanced net CO2 assimilation rate of Ouro Negro cultivar but did not change significantly the photosynthesis of Carioca cultivar under both water deficit and rehydration periods. The results revealed that a foliar Pi spray induced an up-regulation of photosynthesis in common bean under mild water deficit, with this effect being genotype-dependent.


2008 ◽  
Vol 9 (1) ◽  
pp. 16 ◽  
Author(s):  
J. A. Wrather ◽  
J. G. Shannon ◽  
T. E. Carter ◽  
J. P. Bond ◽  
J. C. Rupe ◽  
...  

Charcoal rot caused by Macrophomina phaseolina is a common disease of many crops including common bean and soybean. Incidence and severity of charcoal rot are enhanced when plants are drought stressed. Resistance to this pathogen in some common bean genotypes was associated with drought tolerance. Resistance to M. phaseolina among soybean genotypes has not been identified, although a few have been rated moderately resistant based on less root tissue colonization by this pathogen compared to other genotypes. A few soybean genotypes have been rated as slow-wilt or drought-tolerant. The reaction of drought-tolerant soybean to M. phaseolina compared to intolerant or drought-sensitive genotypes has not been determined. Our objective was to determine if there were differences in root colonization by M. phaseolina between drought-tolerant and drought-sensitive soybean genotypes. Drought tolerance of the soybean genotypes and root colonization by M. phaseolina at the R6 and R8 stages of growth were not related in this study. Some drought-tolerant soybean genotypes may resist root colonization by M. phaseolina, but our results suggest that this is not true for all drought-tolerant genotypes. Accepted for publication 21 March 2008. Published 18 June 2008.


Plant Science ◽  
2006 ◽  
Vol 170 (3) ◽  
pp. 659-664 ◽  
Author(s):  
Mauro Guida dos Santos ◽  
Rafael Vasconcelos Ribeiro ◽  
Ricardo Ferraz de Oliveira ◽  
Eduardo Caruso Machado ◽  
Carlos Pimentel

2019 ◽  
Vol 5 (2) ◽  
pp. 55-72 ◽  
Author(s):  
Seyedeh Zahra Hosseini ◽  
Ahmad Ismaili ◽  
Seyed Sajad Sohrabi ◽  
◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document