scholarly journals Modification of a gas exchange system to measure active and passive chlorophyll fluorescence simultaneously under field conditions

AoB Plants ◽  
2020 ◽  
Author(s):  
Eliot W Meeker ◽  
Troy S Magney ◽  
Nicolas Bambach ◽  
Mina Momayyezi ◽  
Andrew J McElrone

Abstract Solar-induced fluorescence (SIF) is a promising tool to estimate photosynthesis across scales; however, there has been limited research done at the leaf-level to investigate the relationship between SIF and photosynthesis. To help bridge this gap, a LI-COR LI-6800 gas exchange instrument was modified with a visible-near-infrared (VIS-NIR) spectrometer to measure active and passive fluorescence simultaneously. The system was adapted by drilling a hole into the bottom plate of the leaf chamber and inserting a fiber-optic to measure passive steady-state fluorescence (Ft,λ, analogous to SIF) from the abaxial surface of a leaf. This new modification can concurrently measure gas exchange, passive fluorescence, and active fluorescence over the same leaf area and will allow researchers to measure leaf-level Ft,λ in the field to validate tower-based and satellite measurements. To test the modified instrument, measurements were performed on leaves of well-watered and water stressed walnut plants at three light-levels and a constant air temperature. Measurements on these same plants were also conducted using a similarly modified Walz GFS-3000 gas exchange instrument to compare results. We found a positive linear correlation between Ft,λ measurements from the modified LI-6800 and GFS-3000 instruments. We also report a positive linear relationship between Ft,λ and normalized steady-state chlorophyll fluorescence (Ft/Fo) from the pulse-amplitude modulation (PAM) fluorometer of the LI-6800 system. Accordingly, this modification will inform the link between spectrally resolved Ft,λ and gas-exchange – leading to improved interpretation of how remotely sensed SIF tracks changes in the light reactions of photosynthesis.

2020 ◽  
Author(s):  
Christine Chang ◽  
Jiaming Wen ◽  
Ruiqing Zhou ◽  
Ying Sun

<p>Solar-induced chlorophyll fluorescence (SIF) offers a promising tool to remotely monitor photosynthesis from the canopy to regional scale. However, in order to interpret instantaneous satellite SIF measurements in a biological context, there needs to be a better understanding of the diurnal dynamics of SIF and photosynthesis. Using two maize sites with contrasting row orientations, we acquired canopy scale SIF and hyperspectral reflectance using a tower and UAV, in conjunction with concurrent leaf-level measurements of photosynthesis and chlorophyll fluorescence. We show that SIF dynamics are impacted by a combination of canopy structure and plant physiology, which can lead to a divergent SIF-photosynthesis relationship, particularly at certain times of day. These findings have significant implications for upscaling and interpreting satellite SIF retrievals, which rely on daily mean integrals.</p>


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2055
Author(s):  
Reeve Legendre ◽  
Nicholas T. Basinger ◽  
Marc W. van Iersel

Plants naturally contain high levels of the stress-responsive fluorophore chlorophyll. Chlorophyll fluorescence imaging (CFI) is a powerful tool to measure photosynthetic efficiency in plants and provides the ability to detect damage from a range of biotic and abiotic stresses before visible symptoms occur. However, most CFI systems are complex, expensive systems that use pulse amplitude modulation (PAM) fluorometry. Here, we test a simple CFI system, that does not require PAM fluorometry, but instead simply images fluorescence emitted by plants. We used this technique to visualize stress induced by the photosystem II-inhibitory herbicide atrazine. After applying atrazine as a soil drench, CFI and color images were taken at 15-minute intervals, alongside measurements from a PAM fluorometer and a leaf reflectometer. Pixel intensity of the CFI images was negatively correlated with the quantum yield of photosystem II (ΦPSII) (p < 0.0001) and positively correlated with the measured reflectance in the spectral region of chlorophyll fluorescence emissions (p < 0.0001). A fluorescence-based stress index was developed using the reflectometer measurements based on wavelengths with the highest (741.2 nm) and lowest variability (548.9 nm) in response to atrazine damage. This index was correlated with ΦPSII (p < 0.0001). Low-cost CFI imaging can detect herbicide-induced stress (and likely other stressors) before there is visual damage.


2006 ◽  
Vol 131 (4) ◽  
pp. 469-475 ◽  
Author(s):  
Terri Starman ◽  
Leonardo Lombardini

A study was conducted to characterize the morphological and physiological responses of four herbaceous perennial species subjected to two subsequent drought cycles. Lantana camara L. `New Gold' (lantana), Lobelia cardinalis L. (cardinal flower), Salvia farinacea Benth. `Henry Duelberg' (mealy sage), and Scaevola aemula R. Br. `New Wonder' (fan flower) were subjected to two consecutive 10-day drought cycles. Growth response, leaf gas exchange, and chlorophyll fluorescence were measured during the experiment. The morphology of L. cardinalis and L. camara was not affected by drought, while S. farinacea had reductions in plant height and leaf area and S. aemula had reductions in dry weight. Overall, plant growth and development continued even when substrate water content was reduced to 0.13 mm3·mm-3, which indicated a level of substrate water below container capacity was sufficient for greenhouse production of these species. The drought treatments had little effect on the photochemical efficiency (Fv/Fm) of Photosystem II. An increase in minimal fluorescence (Fo) was observed in S. aemula on the last day of the second cycle. Drought treatment caused increased leaf-level water use efficiency (WUE) at the end of the first cycle in L. cardinalis and S. aemula, but not in L. camara and S. farinacea. Plants of L. camara, S. farinacea, and S. aemula that had received drought during both cycles became more water use efficient by the end of the second cycle, but L. cardinalis did not.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 541b-541
Author(s):  
Rita Giuliani ◽  
James A. Flore

Potted peach trees grown outdoors during the 1997 season were subjected to drought and subsequent rewatering to evaluate their dynamic response to soil water content. The investigation was primarily focused on the early detection of plant water stress to prevent negative effects on the growth. Leaf chlorophyll fluorescence and canopy temperature estimates (by infra-red thermometry) were conducted. Drought effect on physiological processes were detected through by estimates of canopy development rate, leaf gas-exchange measurements; while leaf water potential was measured to characterize plant water status. A decrease in the canopy's development rate was found 1 week after irrigation was stopped, which also coincided with a more-negative leaf water potential, whereas a decrease of the gas-exchange activities occurred several days later. No significant differences between the stressed and control plants were recorded by the chlorophyll fluorescence parameters (Fo, Fm, Fv and the ratio Fv/Fm), whereas the infra-red estimates of canopy temperature detected a slight increase of the canopy surface temperature (connected to the change of leaf energy balance and in relation to partial stomatal closure) on the non-irrigated plants 1 week after the beginning of the trial. The use of infra-red thermometry for early detection of water shortage is discussed.


2020 ◽  
Vol 44 (8) ◽  
pp. 851-860
Author(s):  
Joy Eliaerts ◽  
Natalie Meert ◽  
Pierre Dardenne ◽  
Vincent Baeten ◽  
Juan-Antonio Fernandez Pierna ◽  
...  

Abstract Spectroscopic techniques combined with chemometrics are a promising tool for analysis of seized drug powders. In this study, the performance of three spectroscopic techniques [Mid-InfraRed (MIR), Raman and Near-InfraRed (NIR)] was compared. In total, 364 seized powders were analyzed and consisted of 276 cocaine powders (with concentrations ranging from 4 to 99 w%) and 88 powders without cocaine. A classification model (using Support Vector Machines [SVM] discriminant analysis) and a quantification model (using SVM regression) were constructed with each spectral dataset in order to discriminate cocaine powders from other powders and quantify cocaine in powders classified as cocaine positive. The performances of the models were compared with gas chromatography coupled with mass spectrometry (GC–MS) and gas chromatography with flame-ionization detection (GC–FID). Different evaluation criteria were used: number of false negatives (FNs), number of false positives (FPs), accuracy, root mean square error of cross-validation (RMSECV) and determination coefficients (R2). Ten colored powders were excluded from the classification data set due to fluorescence background observed in Raman spectra. For the classification, the best accuracy (99.7%) was obtained with MIR spectra. With Raman and NIR spectra, the accuracy was 99.5% and 98.9%, respectively. For the quantification, the best results were obtained with NIR spectra. The cocaine content was determined with a RMSECV of 3.79% and a R2 of 0.97. The performance of MIR and Raman to predict cocaine concentrations was lower than NIR, with RMSECV of 6.76% and 6.79%, respectively and both with a R2 of 0.90. The three spectroscopic techniques can be applied for both classification and quantification of cocaine, but some differences in performance were detected. The best classification was obtained with MIR spectra. For quantification, however, the RMSECV of MIR and Raman was twice as high in comparison with NIR. Spectroscopic techniques combined with chemometrics can reduce the workload for confirmation analysis (e.g., chromatography based) and therefore save time and resources.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 341
Author(s):  
Pauliina Salmi ◽  
Matti A. Eskelinen ◽  
Matti T. Leppänen ◽  
Ilkka Pölönen

Spectral cameras are traditionally used in remote sensing of microalgae, but increasingly also in laboratory-scale applications, to study and monitor algae biomass in cultures. Practical and cost-efficient protocols for collecting and analyzing hyperspectral data are currently needed. The purpose of this study was to test a commercial, easy-to-use hyperspectral camera to monitor the growth of different algae strains in liquid samples. Indices calculated from wavebands from transmission imaging were compared against algae abundance and wet biomass obtained from an electronic cell counter, chlorophyll a concentration, and chlorophyll fluorescence. A ratio of selected wavebands containing near-infrared and red turned out to be a powerful index because it was simple to calculate and interpret, yet it yielded strong correlations to abundances strain-specifically (0.85 < r < 0.96, p < 0.001). When all the indices formulated as A/B, A/(A + B) or (A − B)/(A + B), where A and B were wavebands of the spectral camera, were scrutinized, good correlations were found amongst them for biomass of each strain (0.66 < r < 0.98, p < 0.001). Comparison of near-infrared/red index to chlorophyll a concentration demonstrated that small-celled strains had higher chlorophyll absorbance compared to strains with larger cells. The comparison of spectral imaging to chlorophyll fluorescence was done for one strain of green algae and yielded strong correlations (near-infrared/red, r = 0.97, p < 0.001). Consequently, we described a simple imaging setup and information extraction based on vegetation indices that could be used to monitor algae cultures.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2049
Author(s):  
Elżbieta Stefanik ◽  
Olga Drewnowska ◽  
Barbara Lisowska ◽  
Bernard Turek

Horses, due to their unique anatomy and physiology, are particularly prone to intraoperative cardiopulmonary disorders. In dorsally recumbent horses, chest wall movement is restricted and the lungs are compressed by the abdominal organs, leading to the collapse of the alveoli. This results in hypoventilation, leading to hypercapnia and respiratory acidosis as well as impaired tissue oxygen supply (hypoxia). The most common mechanisms disturbing gas exchange are hypoventilation, atelectasis, ventilation–perfusion (V/Q) mismatch and shunt. Gas exchange disturbances are considered to be an important factor contributing to the high anaesthetic mortality rate and numerous post-anaesthetic side effects. Current monitoring methods, such as a pulse oximetry, capnography, arterial blood gas measurements and spirometry, may not be sufficient by themselves, and only in combination with each other can they provide extensive information about the condition of the patient. A new, promising, complementary method is near-infrared spectroscopy (NIRS). The purpose of this article is to review the negative effect of general anaesthesia on the gas exchange in horses and describe the post-operative complications resulting from it. Understanding the changes that occur during general anaesthesia and the factors that affect them, as well as improving gas monitoring techniques, can improve the post-aesthetic survival rate and minimize post-operative complications.


Sign in / Sign up

Export Citation Format

Share Document