biological context
Recently Published Documents


TOTAL DOCUMENTS

161
(FIVE YEARS 45)

H-INDEX

22
(FIVE YEARS 6)

PLoS Genetics ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. e1009668
Author(s):  
Jelly H. M. Soffers ◽  
Sergio G-M Alcantara ◽  
Xuanying Li ◽  
Wanqing Shao ◽  
Christopher W. Seidel ◽  
...  

The Spt/Ada-Gcn5 Acetyltransferase (SAGA) coactivator complex has multiple modules with different enzymatic and non-enzymatic functions. How each module contributes to gene expression is not well understood. During Drosophila oogenesis, the enzymatic functions are not equally required, which may indicate that different genes require different enzymatic functions. An analogy for this phenomenon is the handyman principle: while a handyman has many tools, which tool he uses depends on what requires maintenance. Here we analyzed the role of the non-enzymatic core module during Drosophila oogenesis, which interacts with TBP. We show that depletion of SAGA-specific core subunits blocked egg chamber development at earlier stages than depletion of enzymatic subunits. These results, as well as additional genetic analyses, point to an interaction with TBP and suggest a differential role of SAGA modules at different promoter types. However, SAGA subunits co-occupied all promoter types of active genes in ChIP-seq and ChIP-nexus experiments, and the complex was not specifically associated with distinct promoter types in the ovary. The high-resolution genomic binding profiles were congruent with SAGA recruitment by activators upstream of the start site, and retention on chromatin by interactions with modified histones downstream of the start site. Our data illustrate that a distinct genetic requirement for specific components may conceal the fact that the entire complex is physically present and suggests that the biological context defines which module functions are critical.


BMC Genomics ◽  
2021 ◽  
Vol 22 (S5) ◽  
Author(s):  
Mansheng Li ◽  
Qiang He ◽  
Chunyuan Yang ◽  
Jie Ma ◽  
Fuchu He ◽  
...  

Abstract Background With the rapid increase in the amount of Protein-Protein Interaction (PPI) data, the establishment of an event-centered PPI ontology that contains temporal and spatial vocabularies is urgently needed to clarify PPI biological annotations. In this paper, we propose a precisely designed schema - PPIO (PPI Ontology) for representing the biological context of PPIs. Results Inspired by the event model and the distinct characteristics of PPI events, PPIO consists of six core aspects of the information required for reporting a PPI event, including the interactor (who), the biological process (when), the subcellular location (where), the interaction type (how), the biological function (what) and the detection method (which). PPIO is implemented through the integration of appropriate terms from the corresponding vocabularies/ontologies, e.g., Gene Ontology, Protein Ontology, PSI-MI/MOD, etc. To assess PPIO, an approach based on PPIO in developed to extract PPI biological annotations from an open standard corpus “BioCreAtIvE-PPI”. The experiment results demonstrate PPIO’s high performance, a precision of 0.69, a recall of 0.72 and an F-score of 0.70. Conclusions PPIO is a well-constructed essential ontology in the interpretation of PPI biological context. The results of the experiments conducted on the BioCreAtIvE corpus demonstrate that PPIO is able to facilitate PPI annotation extraction from biomedical literature effectively and enrich essential annotation for PPIs.


2021 ◽  
Vol 07 (10) ◽  
Author(s):  
A. Seghrouchni ◽  

Thrombocytopenia occurs almost systematically in cardiac surgery under extracorporeal circulation (ECC). Its usual causes are multiple and recognized, but sometimes uncommon mechanisms are added, posing the problem of etiological diagnosis and the dilemma of optimal adequate management. The etiological diagnosis of thrombocytopenia after extracorporeal circulation requires a careful analysis of the chronology of the thrombocytopenia and also of the clinical and biological context. The authors report the observation of a case of additional thrombocytopenia after cardiovascular surgery under extracorporeal circulation, detailing the diagnostic modalities and describing the different usual clinical and biological characteristics of platelet changes induced by extracorporeal circulation.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hermine Biermé ◽  
Camille Constant ◽  
Anne Duittoz ◽  
Christine Georgelin

Abstract We present in this paper a global methodology for the spike detection in a biological context of fluorescence recording of GnRH-neurons calcium activity. For this purpose we first propose a simple stochastic model that could mimic experimental time series by considering an autoregressive AR(1) process with a linear trend and specific innovations involving spiking times. Estimators of parameters with asymptotic normality are established and used to set up a statistical test on estimated innovations in order to detect spikes. We compare several procedures and illustrate on biological data the performance of our procedure.


2021 ◽  
Author(s):  
Sharan Poonja ◽  
Mehdi Damaghi ◽  
Katarzyna A. Rejniak

AbstractMany solid tumors are characterized by dense extracellular matrix (ECM) composed of various ECM fibril proteins that provide structural support and biological context for the residing cells. The growing tumor cell colonies are capable of remodeling the ECM structure in tumor immediate vicinity to form specific microenvironmental niches. The changes in fibril patterns of the collagen (one of the ECM proteins) surrounding the tumor can be visualized experimentally using both histology and fluorescent imaging. In particular, three diverse tumor associated collagen signatures (TACS) were identified and related to tumor behavior, such as benign growth or invasion. Here we will use an off-lattice hybrid agent-based model (MultiCell-LF) to identify the rules of cell-ECM interactions that guide the development of various patterns of alignment of the ECM fibrils.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Rasmus Magnusson ◽  
Zelmina Lubovac-Pilav

Abstract Background Transcription factors (TFs) are the upstream regulators that orchestrate gene expression, and therefore a centrepiece in bioinformatics studies. While a core strategy to understand the biological context of genes and proteins includes annotation enrichment analysis, such as Gene Ontology term enrichment, these methods are not well suited for analysing groups of TFs. This is particularly true since such methods do not aim to include downstream processes, and given a set of TFs, the expected top ontologies would revolve around transcription processes. Results We present the TFTenricher, a Python toolbox that focuses specifically at identifying gene ontology terms, cellular pathways, and diseases that are over-represented among genes downstream of user-defined sets of human TFs. We evaluated the inference of downstream gene targets with respect to false positive annotations, and found an inference based on co-expression to best predict downstream processes. Based on these downstream genes, the TFTenricher uses some of the most common databases for gene functionalities, including GO, KEGG and Reactome, to calculate functional enrichments. By applying the TFTenricher to differential expression of TFs in 21 diseases, we found significant terms associated with disease mechanism, while the gene set enrichment analysis on the same dataset predominantly identified processes related to transcription. Conclusions and availability The TFTenricher package enables users to search for biological context in any set of TFs and their downstream genes. The TFTenricher is available as a Python 3 toolbox at https://github.com/rasma774/Tftenricher, under a GNU GPL license and with minimal dependencies.


Author(s):  
Jorge Alegre-Cebollada

AbstractHow proteins respond to pulling forces, or protein nanomechanics, is a key contributor to the form and function of biological systems. Indeed, the conventional view that proteins are able to diffuse in solution does not apply to the many polypeptides that are anchored to rigid supramolecular structures. These tethered proteins typically have important mechanical roles that enable cells to generate, sense, and transduce mechanical forces. To fully comprehend the interplay between mechanical forces and biology, we must understand how protein nanomechanics emerge in living matter. This endeavor is definitely challenging and only recently has it started to appear tractable. Here, I introduce the main in vitro single-molecule biophysics methods that have been instrumental to investigate protein nanomechanics over the last 2 decades. Then, I present the contemporary view on how mechanical force shapes the free energy of tethered proteins, as well as the effect of biological factors such as post-translational modifications and mutations. To illustrate the contribution of protein nanomechanics to biological function, I review current knowledge on the mechanobiology of selected muscle and cell adhesion proteins including titin, talin, and bacterial pilins. Finally, I discuss emerging methods to modulate protein nanomechanics in living matter, for instance by inducing specific mechanical loss-of-function (mLOF). By interrogating biological systems in a causative manner, these new tools can contribute to further place protein nanomechanics in a biological context.


2021 ◽  
Vol 10 (13) ◽  
pp. 2801
Author(s):  
Chen-Xuan Wei ◽  
Michael Francis Burrow ◽  
Michael George Botelho ◽  
W. Keung Leung

Studies on small quantity, highly complex protein samples, such as salivary pellicle, have been enabled by recent major technological and analytical breakthroughs. Advances in mass spectrometry-based computational proteomics such as Multidimensional Protein Identification Technology have allowed precise identification and quantification of complex protein samples on a proteome-wide scale, which has enabled the determination of corresponding genes and cellular functions at the protein level. The latter was achieved via protein-protein interaction mapping with Gene Ontology annotation. In recent years, the application of these technologies has broken various barriers in small-quantity-complex-protein research such as salivary pellicle. This review provides a concise summary of contemporary proteomic techniques contributing to (1) increased complex protein (up to hundreds) identification using minute sample sizes (µg level), (2) precise protein quantification by advanced stable isotope labelling or label-free approaches and (3) the emerging concepts and techniques regarding computational integration, such as the Gene Ontology Consortium and protein-protein interaction mapping. The latter integrates the structural, genomic, and biological context of proteins and genes to predict protein interactions and functional connections in a given biological context. The same technological breakthroughs and computational integration concepts can also be applied to other low-volume oral protein complexes such as gingival crevicular or peri-implant sulcular fluids.


2021 ◽  
Author(s):  
Mihaly Badonyi ◽  
Joseph A Marsh

Assembly pathways of protein complexes should be precise and efficient to minimise misfolding and unwanted interactions with other proteins in the cell. One way to achieve this is by seeding complex assembly during translation via nascent chain engagement. Here, we considered the possibility that the propensity of subunits to cotranslationally assemble is ingrained within the interface hierarchy of protein complexes. Using a combination of proteome-specific structure data and assembly-onset positions determined by ribosome profiling, we show that larger interfaces are prioritised in the course of cotranslational assembly. We observe that this effect is not exclusive to homomeric complexes, but appears to drive the assembly of heteromeric subunits, to the extent that interface size differences are detectable between N and C-terminal locations, with the former being larger on average. We provide explanations to this phenomenon and discuss its importance in a biological context.


Sign in / Sign up

Export Citation Format

Share Document