Testing the simple and complex versions of Gloger’s rule in the Variable Antshrike (Thamnophilus caerulescens, Thamnophilidae)

The Auk ◽  
2020 ◽  
Vol 137 (3) ◽  
Author(s):  
Rafael S Marcondes ◽  
Katherine Faust Stryjewski ◽  
Robb T Brumfield

Abstract Gloger’s rule is a classic ecogeographical principle that, in its simplest version, predicts animals should be darker in warmer and wetter climates. In a rarely tested more complex version, it also predicts animals should be more rufous in warmer and drier climates. The Variable Antshrike (Thamnophilus caerulescens) is a widely distributed South American passerine that presents an impressive amount of plumage color variation and occupies a wide variety of climatic conditions. Moreover, genetic and vocal evidence indicate ongoing hybridization in south-central Bolivia among 3 populations with very distinct plumages. We collected color data from 232 specimens from throughout this species’ distribution to test the predictions of Gloger’s rule. We found a negative correlation between brightness and precipitation, consistent with the simple version of Gloger’s rule. In contrast, we found that birds were darker in cooler climates, contrary to the simple version of Gloger’s rule, but consistent with recent findings in other taxa. We found support for both predictions of the complex Gloger’s rule and suggest it might be driven by background matching. We conclude by concurring with a recent suggestion that the simple version of Gloger’s rule should be reformulated exclusively in terms of humidity.

2020 ◽  
Author(s):  
Rafael S. Marcondes ◽  
Jonathan A. Nations ◽  
Glenn F. Seeholzer ◽  
Robb T. Brumfield

AbstractGloger’s rule predicts endothermic animals should have darker colors under warm and rainy climates, but empirical studies have typically found that animals tend to be darker under cool and rainy climates. Moreover, Gloger’s rule has rarely been tested jointly with the prediction that animals occupying dark habitats should have darker colors to enhance crypsis. We aimed to disentangle the effects of climate and light environments (habitat type) as correlates of plumage brightness in a large Neotropical passerine family. We found that cooler and rainier climates are associated with darker plumage, even after accounting for habitat types, and that darker habitats are associated with darker plumage, even after accounting climate. There was an important interaction between precipitation and temperature, whereby the negative effect of temperature on brightness becomes stronger under cooler temperatures. Climate and light environments have separate but complementary effects in driving macroevolutionary patterns of plumage color variation in birds.


2018 ◽  
Author(s):  
Jon T. Merwin ◽  
Glenn F. Seeholzer ◽  
Brian Tilston Smith

AbstractBackgroundBird plumage exhibits a diversity of colors that serve functional roles ranging from signaling to camouflage and thermoregulation. However, birds must maintain a balance between evolving colorful signals to attract mates, minimizing conspicuousness to predators, and optimizing adaptation to climate conditions. Examining plumage color macroevolution provides a framework for understanding this dynamic interplay over phylogenetic scales. Plumage evolution due to a single overarching process, such as selection, may generate the same macroevolutionary pattern of color variation across all body regions. In contrast, independent processes may partition plumage into sections and produce region-specific patterns. To test these alternative scenarios, we collected color data from museum specimens of an ornate clade of birds, the Australasian lorikeets, using visible-light and UV-light photography, and comparative methods. We predicted that the diversification of homologous feather regions, i.e., patches, known to be involved in sexual signaling (e.g., face) would be less constrained than patches on the back and wings, where new color states may come at the cost of crypsis. Because environmental adaptation may drive evolution towards or away from color states, we tested whether climate more strongly covaried with plumage regions under greater or weaker macroevolutionary constraint.ResultsWe found that alternative macroevolutionary models and varying rates best describe color evolution, a pattern consistent with our prediction that different plumage regions evolved in response to independent processes. Modeling plumage regions independently, in functional groups, and all together showed that patches with similar macroevolutionary models clustered together into distinct regions (e.g., head, wing, belly), which suggests that plumage does not evolve as a single trait in this group. Wing patches, which were conserved on a macroevolutionary scale, covaried with climate more strongly than plumage regions (e.g., head), which diversified in a burst.ConclusionsOverall, our results support the hypothesis that the extraordinary color diversity in the lorikeets was generated by a mosaic of evolutionary processes acting on plumage region subsets. Partitioning of plumage regions in different parts of the body provides a mechanism that allows birds to evolve bright colors for signaling and remain hidden from predators or adapt to local climatic conditions.


2021 ◽  
Vol 40 (2) ◽  
pp. 581-606
Author(s):  
C.A. BASTÍAS ◽  
R. CHARRIER ◽  
C.V. MILLACURA ◽  
L. AGUIRRE ◽  
F. HERVÉ ◽  
...  

We present an interpretation of how natural geological and meteorological events influenced the cosmovision of the Mapuche people from south-central Chile. These events resulted from the geodynamic conditions and related processes occurring along the South American active continental margin and the climatic conditions in the region. Their influence on the Mapuche cosmovision is clearly reflected in the most important myths and legends of the Mapuche acquired knowledge. One particularly illustrative myth refers to the combat between two huge snakes, Trentrén and Kaikai. Kaikai, representing the ocean, continuously tries to encroach upon the earth, and Trenten, representing the earth, opposes Kaikai by uplifting the ground to save the inhabitants. This is interpreted as an allegory for what happens during earthquakes when the back-and-forth movement of tsunami waves makes it appear as if the earth sinks and uplifts. Several hills named Trentrén are topographic heights that people can climb to be safe from the effects of the tsunamis. Other myths and legends refer to other characteristic geological phenomena in this particularly active tectonic environment. This article illustrates how the mythical interpretation of geological events configured the understanding of the surrounding world and produced the exquisite body of myths and legends in the Mapuche culture.


Rodriguésia ◽  
2018 ◽  
Vol 69 (2) ◽  
pp. 385-396 ◽  
Author(s):  
Rodrigo M. Freire ◽  
Ignacio M. Barberis ◽  
José L. Vesprini

Abstract Aechmea distichantha, a widely-distributed facultative epiphytic bromeliad species, is present from rainforests to xerophytic forests. At its southernmost distribution (Humid Chaco) it grows in the understory and forest edges. This animal-pollinated bromeliad shows high phenotypic plasticity on its vegetative traits, but there is no information about plasticity on its reproductive traits. Infructescences from shade plants were heavier, had longer rachis, more spikelets, higher number of fruits/spikelet and higher number of seeds/fruit than those from sun plants, but they presented similar number of open flowers. The number of visitation events was similar in both habitats, but more flowers were visited in the sun than in the shade. Flowers were visited by seven species (six insects and one hummingbird). In the sun, the carpenter bee was the most frequent visitor and visited almost all flowers, whereas in the shade different species of visitors attained similar proportion of visits and number of visited flowers. Despite visitation events were similar in both habitats, plants growing in the shade set more seeds/fruit than plants growing in the sun. The higher proportion of visits accomplished by carpenter bees compared to hummingbirds is probably a consequence of the climatic conditions in the austral location of these populations.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 818
Author(s):  
Maria Royo-Navascues ◽  
Edurne Martinez del Castillo ◽  
Roberto Serrano-Notivoli ◽  
Ernesto Tejedor ◽  
Klemen Novak ◽  
...  

Understanding the influence of the current climate on the distribution, composition, and carbon storage capacity of Mediterranean tree species is key to determining future pathways under a warmer and drier climate scenario. Here, we evaluated the influence of biotic and environmental factors on earlywood (EW) and latewood (LW) growth in Aleppo pine (Pinus halepensis Mill.). Our investigation was based on a dense dendrochronological network (71 sites), which covered the entire distribution area of the species in the Iberian Peninsula (around 119.652 km2), and a high-resolution climate dataset of the Western Mediterranean area. We used generalized linear-mixed models to determine the spatial and temporal variations of EW and LW across the species distribution. Our results showed an intense but differentiated climatic influence on both EW and LW growth components. The climatic influence explained significant variations across the environmental gradients in the study area, which suggested an important adaptation through phenotypic plasticity and local adaptation to varying climatic conditions. In addition, we detected a clear spatial trade-off between efficiency and safety strategy in the growth patterns across the species distribution. Additionally, in more productive areas, the trees presented a higher proportion of EW (more efficient to water transport), while, in more xeric conditions, the LW proportion increased (more safety to avoid embolisms), implying an adaptation to more frequent drought episodes and a higher capacity of carbon depletion. We therefore concluded that Mediterranean forests adapted to dryer conditions might be more efficient as carbon reservoirs than forests growing in wetter areas. Finally, we advocated for the need to consider wood density (EW/LW proportion) when modeling current and future forest carbon sequestrations.


2018 ◽  
Vol 373 (1761) ◽  
pp. 20170446 ◽  
Author(s):  
Scott Jarvie ◽  
Jens-Christian Svenning

Trophic rewilding, the (re)introduction of species to promote self-regulating biodiverse ecosystems, is a future-oriented approach to ecological restoration. In the twenty-first century and beyond, human-mediated climate change looms as a major threat to global biodiversity and ecosystem function. A critical aspect in planning trophic rewilding projects is the selection of suitable sites that match the needs of the focal species under both current and future climates. Species distribution models (SDMs) are currently the main tools to derive spatially explicit predictions of environmental suitability for species, but the extent of their adoption for trophic rewilding projects has been limited. Here, we provide an overview of applications of SDMs to trophic rewilding projects, outline methodological choices and issues, and provide a synthesis and outlook. We then predict the potential distribution of 17 large-bodied taxa proposed as trophic rewilding candidates and which represent different continents and habitats. We identified widespread climatic suitability for these species in the discussed (re)introduction regions under current climates. Climatic conditions generally remain suitable in the future, although some species will experience reduced suitability in parts of these regions. We conclude that climate change is not a major barrier to trophic rewilding as currently discussed in the literature.This article is part of the theme issue ‘Trophic rewilding: consequences for ecosystems under global change’.


1980 ◽  
Vol 26 (94) ◽  
pp. 377-392 ◽  
Author(s):  
Steve W. Hackett ◽  
Henry S. Santeford

AbstractOver 30% of Alaska’s 586 400 squares miles (1 518900 km2) is subject to snow-avalanche activity. For a state-wide avalanche hazard evaluation, Alaska has been divided into six major snow— avalanche regions on the basis of topography, climatological data, dominant snow—pack conditions, and typical avalanche activity. They are: Arctic Slope, Brooks Range, Western, Interior, South—central, and South—east.Mountainous terrain was studied at scales of 1 : 250 000 and 1 : 1 584000; final compilation was at a scale of 1 : 2 500 000. Regional snow—pack and climatic conditions were cross—correlated with relief zonation of each avalanche region to produce a map of Alaska's provisional snow—avalanche potential.Most of the mountainous areas in the South—central and South—east regions, because of their northern latitude, closeness to large masses of water, and large orographic and cylonic weather processes, are susceptible to major avalanche activity. For areas near population centers, the potential avalanche terrain has been identified from data on known and suspected avalanche activity through air photographs, terrain analysis, and documented snow—avalanche occurrences compiled at scales of 1 : 250 000 and 1 : 63 360.The state—wide regional data compilation and study are initial steps toward avalanche zoning in Alaska. Local land—use planning and detailed investigations are needed to establish effective natural—hazard zoning in municipal areas as related to snow avalanche activity.


The Holocene ◽  
2018 ◽  
Vol 29 (3) ◽  
pp. 421-431
Author(s):  
J Max Troncoso Castro ◽  
Carolina Vergara ◽  
Denisse Alvarez ◽  
Gustavo Díaz ◽  
Pablo Fierro ◽  
...  

Knowledge of past environmental and climatic conditions of lake ecosystems on Chiloé Island on a millennial scale is limited. Hence, this study fills a gap in our understanding of this part of southern Chile. The aim of this study was to reconstruct the environmental and climatic history of the last 1000 years of Lake Pastahué through a multi-proxy sediment core analysis. The 1-m-long core was subsampled every centimeter for the organic matter, magnetic susceptibility, grain-size distribution, and biological indicator (pollen, chironomids) analyses. The age model was constructed from 210Pb, 137Cs, and 14C activity. Pollen results revealed a North Patagonian forest composition represented by Nothofagus, Weinmannia, Drimys, Tepualia, Myrtaceae, Poaceae, and Pteridophyta. The abundance of Rumex and Pinus in the most recent part of the pollen assemblage reflects a clear anthropogenic impact. The sedimentological parameters and chironomid assemblage show similar variations, which highlight changes in the trophic state of the lake. The changes observed in all proxies suggest the influence of climate events such as the ‘Medieval Climate Anomaly’ (MCA) and ‘Little Ice Age’ (LIA). The variations observed since the beginning of the 20th century could be the result of the combined effect of anthropogenic activities and the increase in temperature recorded in south-central Chile and Patagonia.


2020 ◽  
pp. 120-125
Author(s):  
K. Elango ◽  
S. Jeyarajan Nelson

The rugose spiralling whitefly, Aleurodicus rugioperculatus Martin is a new exotic pest occurring in several crops including coconut since 2016 in India. Due to variation in the agro-climatic conditions of different regions, arthropods show varying trends in their incidence also in nature and extent of damage to the crop. Besides, abiotic factors also play a key role in determining the incidence and dominance of a particular pest and their natural enemies in a crop ecosystem. The population dynamics of new exotic whitefly species, A. rugioperculatus and their associated natural enemies was assessed on five-year-old Chowghat Orange Dwarf coconut trees at Coconut Farm of Tamil Nadu Agricultural University. The study indicated that RSW was found throughout the year on coconut and the observation recorded on weekly interval basis shows that A. rugioperculatus population escalated from the first week of July 2018 (130.8 nymphs/leaf/frond) reaching the maximum during the first week of October (161.0 nymphs/leaf/frond) which subsequently dwindled to a minimum during April. The parasitisation by E. guadeloupae on RSW ranged from 31.60 percent in Aug. 2018 to 57.60 percent in December 2018. The association of biotic and abiotic factors with A. rugioperculatus population showed a negative correlation with E. guadeloupae and C. montrouzieri. There was a significant positive correlation between maximum temperature and minimum temperature as well as relative humidity. However, rainfall showed a negative correlation with A. rugioperculatus population.


Author(s):  
Pablo Reyes ◽  
Rodrigo Hucke-Gaete ◽  
Juan Pablo Torres-Florez

This paper presents results of a study conducted on the trawling industrial fishery fleet of Merluccius gayi in south-central Chile, and the resulting interactions with the South American sea lion (Otaria flavescens). This study is based on observations made during September 2004, when incidental sea lion catch in the trawls was 6.3 sea lions/working day (1.2 sea lions/trawl−1). A total of 82 animals were incidentally caught, of which 12 were found dead, and the 70 remaining suffered from internal bleeding and/or fractures as a result of their capture. 83.3% of the fatalities occurred during nocturnal trawls, which comprise 30% of all observed trawls. Possible mechanisms of sea lion take are discussed. This note presents the first records of sea lions incidental by-catch by the trawler fleet along the south-east Pacific coast of Chile.


Sign in / Sign up

Export Citation Format

Share Document