scholarly journals TiFoSi: an efficient tool for mechanobiology simulations of epithelia

2020 ◽  
Vol 36 (16) ◽  
pp. 4525-4526
Author(s):  
Oriol Canela-Xandri ◽  
Samira Anbari ◽  
Javier Buceta

Abstract Motivation Emerging phenomena in developmental biology and tissue engineering are the result of feedbacks between gene expression and cell biomechanics. In that context, in silico experiments are a powerful tool to understand fundamental mechanisms and to formulate and test hypotheses. Results Here, we present TiFoSi, a computational tool to simulate the cellular dynamics of planar epithelia. TiFoSi allows to model feedbacks between cellular mechanics and gene expression (either in a deterministic or a stochastic way), the interaction between different cell populations, the custom design of the cell cycle and cleavage properties, the protein number partitioning upon cell division, and the modeling of cell communication (juxtacrine and paracrine signaling). Availability and implementation http://tifosi.thesimbiosys.com. Supplementary information Supplementary data are available at Bioinformatics online.

2020 ◽  
Author(s):  
Oriol Canela-Xandri ◽  
Samira Anbari ◽  
Javier Buceta

AbstractAboutThis document is an extended version of the main text where some details and results are fleshed out. Further details can be also found in the manual of the code and at TiFoSi’s website: http://tifosi.thesimbiosys.com.MotivationEmerging phenomena in developmental biology and tissue engineering are the result of feedbacks between gene expression and cell biomechanics. In that context, in silico experiments are a powerful tool to understand fundamental mechanisms and to formulate and test hypotheses.ResultsHere we present TiFoSi, a computational tool to simulate the cellular dynamics of planar epithelia. TiFoSi allows to model feedbacks between cellular mechanics and gene expression (either in a deterministic or a stochastic way), the interaction between different cell populations, the custom design of the cell cycle and cleavage properties, the protein number partitioning upon cell division, and the modeling of cell communication (juxtacrine and paracrine signalling). TiFoSi fills a niche in the field of software solutions to simulate the mechanobiology of epithelia because of its functionalities, computational efficiency, and its user-friendly approach to design in silico experiments using XML configuration files.Availabilityhttp://[email protected]


2001 ◽  
Vol 25 (12) ◽  
pp. 1137-1142 ◽  
Author(s):  
Jiřı́ Schwarz ◽  
Zuzana Trnková ◽  
Renáta Bedrlı́ková ◽  
Adam Jirásek ◽  
Dana Žáková ◽  
...  

Endocrinology ◽  
1999 ◽  
Vol 140 (5) ◽  
pp. 2110-2116 ◽  
Author(s):  
Roni Mamluk ◽  
Nitzan Levy ◽  
Bo Rueda ◽  
John S. Davis ◽  
Rina Meidan

Abstract Our previous studies demonstrated that endothelin-1 (ET-1), a 21-amino acid vasoconstrictor peptide, has a paracrine regulatory role in bovine corpus luteum (CL). The peptide is produced within the gland where it inhibits progesterone production by acting via the selective type A endothelin (ETA) receptors. The present study was designed to characterize ETA receptor gene expression in different ovarian cell types and its hormonal regulation. ETA receptor messenger RNA (mRNA) levels were high in follicular cells as well as in CL during luteal regression. At this latter stage, high ETA receptor expression concurred with low prostaglandin F2α receptor mRNA. The ETA receptor gene was expressed by all three major cell populations of the bovine CL; i.e. small and large luteal cells, as well as in luteal endothelial cells. Among these various cell populations, the highest ETA receptor mRNA levels were found in endothelial cells. cAMP elevating agents, forskolin and LH, suppressed ETA receptor mRNA expression in luteinized theca cells (LTC). This inhibition was dose dependent and was evident already after 24 h of incubation. In luteinized granulosa cells (LGC), 10 and 100 ng/ml of insulin-like growth factor I and insulin (only at a concentration of 2000 ng/ml) markedly decreased ETA receptor mRNA levels. In both LGC and LTC there was an inverse relationship between ETA receptor gene expression and progesterone production; insulin (in LGC) and forskolin (in LTC) enhanced progesterone production while inhibiting ETA receptor mRNA levels. Our findings may therefore suggest that, during early stages of luteinization when peak levels of both LH and insulin-like growth factor I exist, the expression of ETA receptors in the gland are suppressed. This study demonstrates physiologically relevant regulatory mechanisms controlling ETA receptor gene expression and further supports the inhibitory role of ET-1 in CL function.


2018 ◽  
Vol 35 (15) ◽  
pp. 2686-2689
Author(s):  
Asa Thibodeau ◽  
Dong-Guk Shin

Abstract Summary Current approaches for pathway analyses focus on representing gene expression levels on graph representations of pathways and conducting pathway enrichment among differentially expressed genes. However, gene expression levels by themselves do not reflect the overall picture as non-coding factors play an important role to regulate gene expression. To incorporate these non-coding factors into pathway analyses and to systematically prioritize genes in a pathway we introduce a new software: Triangulation of Perturbation Origins and Identification of Non-Coding Targets. Triangulation of Perturbation Origins and Identification of Non-Coding Targets is a pathway analysis tool, implemented in Java that identifies the significance of a gene under a condition (e.g. a disease phenotype) by studying graph representations of pathways, analyzing upstream and downstream gene interactions and integrating non-coding regions that may be regulating gene expression levels. Availability and implementation The TriPOINT open source software is freely available at https://github.uconn.edu/ajt06004/TriPOINT under the GPL v3.0 license. Supplementary information Supplementary data are available at Bioinformatics online.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 812-812
Author(s):  
Mudit Chaand ◽  
Chris Fiore ◽  
Brian T Johnston ◽  
Diane H Moon ◽  
John P Carulli ◽  
...  

Human beta-like globin gene expression is developmentally regulated. Erythroblasts (EBs) derived from fetal tissues, such as umbilical cord blood (CB), primarily express gamma globin mRNA (HBG) and HbF, while EBs derived from adult tissues, such as bone marrow (BM), predominantly express beta globin mRNA (HBB) and adult hemoglobin. Human genetics has validated de-repression of HBG in adult EBs as a powerful therapeutic paradigm in diseases involving defective HBB, such as sickle cell anemia. To identify novel factors involved in the switch from HBG to HBB expression, and to better understand the global regulatory networks driving the fetal and adult cell states, we performed transcriptome profiling (RNA-seq) and chromatin accessibility profiling (ATAC-seq) on sorted EB cell populations from CB or BM. This approach improves upon previous studies that used unsorted cells (Huang J, Dev Cell 2016) or that did not measure chromatin accessibility (Yan H, Am J Hematol 2018). CD34+ cells from CB and BM were differentiated using a 3-phase in vitro culture system (Giarratana M, Blood 2011). Fluorescence-activated cell sorting and the cell surface markers CD36 and GYPA were used to isolate 7 discrete populations, with each sorting gate representing increasingly mature, stage-matched EBs from CB or BM (Fig 1A, B). RNA-seq analysis revealed expected expression patterns of the beta-like globins, with total levels increasing during erythroid maturation and primarily composed of HBB or HBG transcripts in BM or CB, respectively (Fig 1C). Erythroid maturation led to progressive increases in chromatin accessibility at the HBB promoter in BM populations. In CB-derived cells, erythroid maturation led to progressive increases in chromatin accessibility at the HBG promoters through the CD36+GYPA+ stage (Pops 1-5). Chromatin accessibility shifted from the HBG promoters to the HBB promoter during the final stages of differentiation (Pops 6-7), suggesting that HBG gene activation is transient in CB EBs (Fig 1D). Hierarchical clustering and principal component analysis of ATAC-seq data revealed that cell populations cluster based on differentiation stage rather than by BM or CB lineage, suggesting most molecular changes are stage-specific, not lineage-specific (Fig 2A, B). To identify transcription factors driving cell state, and potentially beta-like globin expression preference, we searched for DNA binding motifs within regions of differential chromatin accessibility and found NFI factor motifs enriched under peaks that were larger in BM relative to CB (Fig 2C). Transcription factor footprinting analysis showed that both flanking accessibility and footprint depth at NFI motifs were also increased in BM relative to CB (Fig 2D). Increased chromatin accessibility was observed at the NFIX promoter in BM relative to CB populations, and in HUDEP-2 relative to HUDEP-1 cell lines (Fig 2E). Furthermore, accessibility at the NFIX promoter correlated with elevated NFIX mRNA in BM and HUDEP-2 relative to CB and HUDEP-1, respectively. Together these data implicated NFIX in HbF repression, a finding consistent with previous genome-wide association and DNA methylation studies that suggested a possible role for NFIX in regulating beta-like globin gene expression (Fabrice D, Nat Genet 2016; Lessard S, Genome Med 2015). To directly test the hypothesis that NFIX represses HbF, short hairpin RNAs were used to knockdown (KD) NFIX in primary erythroblasts derived from human CD34+ BM cells (Fig 3A). NFIX KD led to a time-dependent induction of HBG mRNA, HbF, and F-cells comparable to KD of the known HbF repressor BCL11A (Fig 3B-D). A similar effect on HbF was observed in HUDEP-2 cells following NFIX KD (Fig 3E). Consistent with HbF induction, NFIX KD also increased chromatin accessibility and decreased DNA methylation at the HBG promoters in primary EBs (Fig 3F, G). NFIX KD led to a delay in erythroid differentiation as measured by CD36 and GYPA expression (Fig 3H). Despite this delay, by day 14 a high proportion of fully enucleated erythroblasts was observed, suggesting NFIX KD cells are capable of terminal differentiation (Fig 3H). Collectively, these data have enabled identification and validation of NFIX as a novel repressor of HbF, a finding that enhances the understanding of beta-like globin gene regulation and has potential implications in the development of therapeutics for sickle cell disease. Disclosures Chaand: Syros Pharmaceuticals: Employment, Equity Ownership. Fiore:Syros Pharmaceuticals: Employment, Equity Ownership. Johnston:Syros Pharmaceuticals: Employment, Equity Ownership. Moon:Syros Pharmaceuticals: Employment, Equity Ownership. Carulli:Syros Pharmaceuticals: Employment, Equity Ownership. Shearstone:Syros Pharmaceuticals: Employment, Equity Ownership.


2017 ◽  
Author(s):  
Olivier Borkowski ◽  
Drew Endy ◽  
Pakpoom Subsoontorn

AbstractBackgroundAutonomous cell-based control of heterologous gene expression can simplify batch-culture bioprocessing by eliminating external monitoring and extrinsic control of culture conditions. Existing approaches use auto-induction media, synthetic cell-cell communication systems, or application-specific biosensors. A simpler, resource-efficient, and general-purpose expression control system responsive to common changes during batch culture would be useful.ResultsWe used nativeE.colipromoters and recombinase-based switches to repurpose endogenous transcription signals for control of heterologous gene expression. Specifically, natural changes in transcription from endogenous promoters result in recombinase expression at different phases of batch culture. So-expressed recombinases invert a constitutive promoter regulating expression of arbitrary heterologous genes. We realized reversible and single-use switching, reduced static and dynamic cell-to-cell variation, and overall expression amplification. We used “off-the-shelf” genetic parts and abstraction-based composition frameworks to realize reliable forward engineering of our synthetic genetic systems.ConclusionWe engineered autonomous control systems for regulating heterologous gene expression. Our system uses generic endogenous promoters to sense and control heterologous expression during growth-phase transitions. Our system does not require specialized auto-induction media, production or activation of quorum sensing, or the development of application-specific biosensors. Cells programmed to control themselves could simplify existing bioprocess operations and enable the development of more powerful synthetic genetic systems.


2019 ◽  
Author(s):  
Jesse Isaacman-Beck ◽  
Kristine C. Paik ◽  
Carl F. R. Wienecke ◽  
Helen H. Yang ◽  
Yvette E. Fisher ◽  
...  

AbstractMany experimental approaches rely on controlling gene expression in select subsets of cells within an individual animal. However, reproducibly targeting transgene expression to specific fractions of a genetically-defined cell-type is challenging. We developed Sparse Predictive Activity through Recombinase Competition (SPARC), a generalizable toolkit that can express any effector in precise proportions of post-mitotic cells in Drosophila. Using this approach, we demonstrate targeted expression of many effectors and apply these tools to calcium imaging of individual neurons and optogenetic manipulation of sparse cell populations in vivo.


2001 ◽  
Vol 114 (2) ◽  
pp. 303-310 ◽  
Author(s):  
B.B. Friday ◽  
G.K. Pavlath

Myf5 is a member of the muscle regulatory factor family of transcription factors and plays an important role in the determination, development, and differentiation of skeletal muscle. However, factors that regulate the expression and activity of Myf5 itself are not well understood. Recently, a role for the calcium-dependent phosphatase calcineurin was suggested in three distinct pathways in skeletal muscle: differentiation, hypertrophy, and fiber-type determination. We propose that one downstream target of calcineurin and the calcineurin substrate NFAT in skeletal muscle is regulation of Myf5 gene expression. For these studies, we used myotube cultures that contain both multinucleated myotubes and quiescent, mononucleated cells termed ‘reserve’ cells, which share many characteristics with satellite cells. Treatment of such myotube cultures with the calcium ionophore ionomycin results in an approximately 4-fold increase in Myf5 mRNA levels, but similar effects are not observed in proliferating myoblast cultures indicating that Myf5 is regulated by different pathways in different cell populations. The increase in Myf5 mRNA levels in myotube cultures requires the activity of calcineurin and NFAT, and can be specifically enhanced by overexpressing the NFATc isoform. We used immunohistochemical analyses and fractionation of the cell populations to demonstrate that the calcium regulated expression of Myf5 occurs in the mononucleated reserve cells. We conclude that Myf5 gene expression is regulated by a calcineurin- and NFAT-dependent pathway in the reserve cell population of myotube cultures. These results may provide important insights into the molecular mechanisms responsible for satellite cell activation and/or the renewal of the satellite cell pool following activation and proliferation.


2019 ◽  
Vol 36 (3) ◽  
pp. 782-788 ◽  
Author(s):  
Jiebiao Wang ◽  
Bernie Devlin ◽  
Kathryn Roeder

Abstract Motivation Patterns of gene expression, quantified at the level of tissue or cells, can inform on etiology of disease. There are now rich resources for tissue-level (bulk) gene expression data, which have been collected from thousands of subjects, and resources involving single-cell RNA-sequencing (scRNA-seq) data are expanding rapidly. The latter yields cell type information, although the data can be noisy and typically are derived from a small number of subjects. Results Complementing these approaches, we develop a method to estimate subject- and cell-type-specific (CTS) gene expression from tissue using an empirical Bayes method that borrows information across multiple measurements of the same tissue per subject (e.g. multiple regions of the brain). Analyzing expression data from multiple brain regions from the Genotype-Tissue Expression project (GTEx) reveals CTS expression, which then permits downstream analyses, such as identification of CTS expression Quantitative Trait Loci (eQTL). Availability and implementation We implement this method as an R package MIND, hosted on https://github.com/randel/MIND. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document