scholarly journals gep2pep: a bioconductor package for the creation and analysis of pathway-based expression profiles

Author(s):  
Farancesco Napolitano ◽  
Diego Carrella ◽  
Xin Gao ◽  
Diego di Bernardo

Abstract Summary Pathway-based expression profiles allow for high-level interpretation of transcriptomic data and systematic comparison of dysregulated cellular programs. We have previously demonstrated the efficacy of pathway-based approaches with two different applications: the drug set enrichment analysis and the Gene2drug analysis. Here, we present a software tool that allows to easily convert gene-based profiles to pathway-based profiles and analyze them within the popular R framework. We also provide pre-computed profiles derived from the original Connectivity Map and its next generation release, i.e. the LINCS database. Availability and implementation The tool is implemented as the R/Bioconductor package gep2pep and can be freely downloaded from https://bioconductor.org/packages/gep2pep. Contact [email protected] or [email protected] Supplementary information Supplementary data are available at Bioinformatics online.

Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2809
Author(s):  
Paolo Uva ◽  
Maria Carla Bosco ◽  
Alessandra Eva ◽  
Massimo Conte ◽  
Alberto Garaventa ◽  
...  

Neuroblastoma (NB) is one of the deadliest pediatric cancers, accounting for 15% of deaths in childhood. Hypoxia is a condition of low oxygen tension occurring in solid tumors and has an unfavorable prognostic factor for NB. In the present study, we aimed to identify novel promising drugs for NB treatment. Connectivity Map (CMap), an online resource for drug repurposing, was used to identify connections between hypoxia-modulated genes in NB tumors and compounds. Two sets of 34 and 21 genes up- and down-regulated between hypoxic and normoxic primary NB tumors, respectively, were analyzed with CMap. The analysis reported a significant negative connectivity score across nine cell lines for 19 compounds mainly belonging to the class of PI3K/Akt/mTOR inhibitors. The gene expression profiles of NB cells cultured under hypoxic conditions and treated with the mTORC complex inhibitor PP242, referred to as the Mohlin dataset, was used to validate the CMap findings. A heat map representation of hypoxia-modulated genes in the Mohlin dataset and the gene set enrichment analysis (GSEA) showed an opposite regulation of these genes in the set of NB cells treated with the mTORC inhibitor PP242. In conclusion, our analysis identified inhibitors of the PI3K/Akt/mTOR signaling pathway as novel candidate compounds to treat NB patients with hypoxic tumors and a poor prognosis.


2019 ◽  
Vol 36 (8) ◽  
pp. 2587-2588 ◽  
Author(s):  
Christopher M Ward ◽  
Thu-Hien To ◽  
Stephen M Pederson

Abstract Motivation High throughput next generation sequencing (NGS) has become exceedingly cheap, facilitating studies to be undertaken containing large sample numbers. Quality control (QC) is an essential stage during analytic pipelines and the outputs of popular bioinformatics tools such as FastQC and Picard can provide information on individual samples. Although these tools provide considerable power when carrying out QC, large sample numbers can make inspection of all samples and identification of systemic bias a challenge. Results We present ngsReports, an R package designed for the management and visualization of NGS reports from within an R environment. The available methods allow direct import into R of FastQC reports along with outputs from other tools. Visualization can be carried out across many samples using default, highly customizable plots with options to perform hierarchical clustering to quickly identify outlier libraries. Moreover, these can be displayed in an interactive shiny app or HTML report for ease of analysis. Availability and implementation The ngsReports package is available on Bioconductor and the GUI shiny app is available at https://github.com/UofABioinformaticsHub/shinyNgsreports. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (10) ◽  
pp. 3263-3265 ◽  
Author(s):  
Lucas Czech ◽  
Pierre Barbera ◽  
Alexandros Stamatakis

Abstract Summary We present genesis, a library for working with phylogenetic data, and gappa, an accompanying command-line tool for conducting typical analyses on such data. The tools target phylogenetic trees and phylogenetic placements, sequences, taxonomies and other relevant data types, offer high-level simplicity as well as low-level customizability, and are computationally efficient, well-tested and field-proven. Availability and implementation Both genesis and gappa are written in modern C++11, and are freely available under GPLv3 at http://github.com/lczech/genesis and http://github.com/lczech/gappa. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Xiangfu Zhong ◽  
Albert Pla ◽  
Simon Rayner

Abstract Motivation The existence of complex subpopulations of miRNA isoforms, or isomiRs, is well established. While many tools exist for investigating isomiR populations, they differ in how they characterize an isomiR, making it difficult to compare results across different tools. Thus, there is a need for a more comprehensive and systematic standard for defining isomiRs. Such a standard would allow investigation of isomiR population structure in progressively more refined sub-populations, permitting the identification of more subtle changes between conditions and leading to an improved understanding of the processes that generate these differences. Results We developed Jasmine, a software tool that incorporates a hierarchal framework for characterizing isomiR populations. Jasmine is a Java application that can process raw read data in fastq/fasta format, or mapped reads in SAM format to produce a detailed characterization of isomiR populations. Thus, Jasmine can reveal structure not apparent in a standard miRNA-Seq analysis pipeline. Availability and implementation Jasmine is implemented in Java and R and freely available at bitbucket https://bitbucket.org/bipous/jasmine/src/master/. Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (9) ◽  
pp. 2934-2935 ◽  
Author(s):  
Yi Zheng ◽  
Fangqing Zhao

Abstract Summary Circular RNAs (circRNAs) are proved to have unique compositions and splicing events distinct from canonical mRNAs. However, there is no visualization tool designed for the exploration of complex splicing patterns in circRNA transcriptomes. Here, we present CIRI-vis, a Java command-line tool for quantifying and visualizing circRNAs by integrating the alignments and junctions of circular transcripts. CIRI-vis can be applied to visualize the internal structure and isoform abundance of circRNAs and perform circRNA transcriptome comparison across multiple samples. Availability and implementation https://sourceforge.net/projects/ciri/files/CIRI-vis. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Davide Risso ◽  
Stefano Maria Pagnotta

Abstract Motivation Data transformations are an important step in the analysis of RNA-seq data. Nonetheless, the impact of transformation on the outcome of unsupervised clustering procedures is still unclear. Results Here, we present an Asymmetric Winsorization per Sample Transformation (AWST), which is robust to data perturbations and removes the need for selecting the most informative genes prior to sample clustering. Our procedure leads to robust and biologically meaningful clusters both in bulk and in single-cell applications. Availability The AWST method is available at https://github.com/drisso/awst. The code to reproduce the analyses is available at https://github.com/drisso/awst\_analysis. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 36 (7) ◽  
pp. 2306-2307 ◽  
Author(s):  
Sergii Domanskyi ◽  
Carlo Piermarocchi ◽  
George I Mias

Abstract Summary PyIOmica is an open-source Python package focusing on integrating longitudinal multiple omics datasets, characterizing and categorizing temporal trends. The package includes multiple bioinformatics tools including data normalization, annotation, categorization, visualization and enrichment analysis for gene ontology terms and pathways. Additionally, the package includes an implementation of visibility graphs to visualize time series as networks. Availability and implementation PyIOmica is implemented as a Python package (pyiomica), available for download and installation through the Python Package Index (https://pypi.python.org/pypi/pyiomica), and can be deployed using the Python import function following installation. PyIOmica has been tested on Mac OS X, Unix/Linux and Microsoft Windows. The application is distributed under an MIT license. Source code for each release is also available for download on Zenodo (https://doi.org/10.5281/zenodo.3548040). Supplementary information Supplementary data are available at Bioinformatics


2019 ◽  
Vol 35 (17) ◽  
pp. 3151-3153 ◽  
Author(s):  
Johannes Rainer ◽  
Laurent Gatto ◽  
Christian X Weichenberger

Abstract Summary Bioinformatics research frequently involves handling gene-centric data such as exons, transcripts, proteins and their positions relative to a reference coordinate system. The ensembldb Bioconductor package retrieves and stores Ensembl-based genetic annotations and positional information, and furthermore offers identifier conversion and coordinates mappings for gene-associated data. In support of reproducible research, data are tied to Ensembl releases and are kept separately from the software. Premade data packages are available for a variety of genomes and Ensembl releases. Three examples demonstrate typical use cases of this software. Availability and implementation ensembldb is part of Bioconductor (https://bioconductor.org/packages/ensembldb). Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (12) ◽  
pp. 3947-3948
Author(s):  
Jose-Jesus Fernandez ◽  
Teobaldo E Torres ◽  
Eva Martin-Solana ◽  
Gerardo F Goya ◽  
Maria-Rosario Fernandez-Fernandez

Abstract Summary We have developed a software tool to improve the image quality in focused ion beam–scanning electron microscopy (FIB–SEM) stacks: PolishEM. Based on a Gaussian blur model, it automatically estimates and compensates for the blur affecting each individual image. It also includes correction for artifacts commonly arising in FIB–SEM (e.g. curtaining). PolishEM has been optimized for an efficient processing of huge FIB–SEM stacks on standard computers. Availability and implementation PolishEM has been developed in C. GPL source code and binaries for Linux, OSX and Windows are available at http://www.cnb.csic.es/%7ejjfernandez/polishem. Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Vol 35 (13) ◽  
pp. 2258-2266 ◽  
Author(s):  
Van Du T Tran ◽  
Sébastien Moretti ◽  
Alix T Coste ◽  
Sara Amorim-Vaz ◽  
Dominique Sanglard ◽  
...  

Abstract Motivation Genome-scale metabolic networks and transcriptomic data represent complementary sources of knowledge about an organism’s metabolism, yet their integration to achieve biological insight remains challenging. Results We investigate here condition-specific series of metabolic sub-networks constructed by successively removing genes from a comprehensive network. The optimal order of gene removal is deduced from transcriptomic data. The sub-networks are evaluated via a fitness function, which estimates their degree of alteration. We then consider how a gene set, i.e. a group of genes contributing to a common biological function, is depleted in different series of sub-networks to detect the difference between experimental conditions. The method, named metaboGSE, is validated on public data for Yarrowia lipolytica and mouse. It is shown to produce GO terms of higher specificity compared to popular gene set enrichment methods like GSEA or topGO. Availability and implementation The metaboGSE R package is available at https://CRAN.R-project.org/package=metaboGSE. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document