scholarly journals Shifts to multiple optima underlie climatic niche evolution in New World phyllostomid bats

2019 ◽  
Vol 128 (4) ◽  
pp. 1008-1020
Author(s):  
Luiz H Varzinczak ◽  
Mauricio O Moura ◽  
Fernando C Passos

Abstract Climate underlies species distribution patterns, especially in species where climate limits distributions, such as the phyllostomid bats, which are mostly restricted to the New World tropics. The evolutionary dynamics that shaped phyllostomid climatic niches remain unclear, and a broad phylogenetic perspective is required to uncover their patterns. We used geographical distributions and evolutionary relationships of 130 species, climate data and phylogenetic comparative methods to uncover dynamics of phyllostomid climatic niche evolution. Diversification of climatic niches began early in phyllostomid evolution (~34 Mya), with most changes taking place ~20 Mya. Although most of these bats were found in tropical regions, shifts towards different evolutionary optima were common. Shifts were mostly towards temperate climates, reflecting complexities in phyllostomid evolution highlighted by the probable role of species-specific adaptations to cope with these climates, the influence of palaeoclimatic events, and biogeographical effects related to the evolution and dispersal of clades in the New World. Our results broaden our understanding of the relationships between phyllostomid bats and climate, filling an important gap in knowledge and suggesting a complex evolution in their occupation of the climatic niche space.

2016 ◽  
Vol 283 (1824) ◽  
pp. 20152458 ◽  
Author(s):  
Camila Gómez ◽  
Elkin A. Tenorio ◽  
Paola Montoya ◽  
Carlos Daniel Cadena

Differences in life-history traits between tropical and temperate lineages are often attributed to differences in their climatic niche dynamics. For example, the more frequent appearance of migratory behaviour in temperate-breeding species than in species originally breeding in the tropics is believed to have resulted partly from tropical climatic stability and niche conservatism constraining tropical species from shifting their ranges. However, little is known about the patterns and processes underlying climatic niche evolution in migrant and resident animals. We evaluated the evolution of overlap in climatic niches between seasons and its relationship to migratory behaviour in the Parulidae, a family of New World passerine birds. We used ordination methods to measure seasonal niche overlap and niche breadth of 54 resident and 49 migrant species and used phylogenetic comparative methods to assess patterns of climatic niche evolution. We found that despite travelling thousands of kilometres, migrants tracked climatic conditions across the year to a greater extent than tropical residents. Migrant species had wider niches than resident species, although residents as a group occupied a wider climatic space and niches of migrants and residents overlapped extensively. Neither breeding latitude nor migratory distance explained variation among species in climatic niche overlap between seasons. Our findings support the notion that tropical species have narrower niches than temperate-breeders, but does not necessarily constrain their ability to shift or expand their geographical ranges and become migratory. Overall, the tropics may have been historically less likely to experience the suite of components that generate strong selection pressures for the evolution of migratory behaviour.


PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e83684 ◽  
Author(s):  
Andressa Duran ◽  
Andreas L. S. Meyer ◽  
Marcio R. Pie

2020 ◽  
Vol 130 (2) ◽  
pp. 419-419
Author(s):  
Luiz H Varzinczak ◽  
Mauricio O Moura ◽  
Fernando C Passos

Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 184
Author(s):  
Giuseppe Andolfo ◽  
Nunzio D’Agostino ◽  
Luigi Frusciante ◽  
Maria Raffaella Ercolano

Tomato (Solanum lycopersicum L.) is a model system for studying the molecular basis of resistance in plants. The investigation of evolutionary dynamics of tomato resistance (R)-loci provides unique opportunities for identifying factors that promote or constrain genome evolution. Nucleotide-binding domain and leucine-rich repeat (NB-LRR) receptors belong to one of the most plastic and diversified families. The vast amount of genomic data available for Solanaceae and wild tomato relatives provides unprecedented insights into the patterns and mechanisms of evolution of NB-LRR genes. Comparative analysis remarked a reshuffling of R-islands on chromosomes and a high degree of adaptive diversification in key R-loci induced by species-specific pathogen pressure. Unveiling NB-LRR natural variation in tomato and in other Solanaceae species offers the opportunity to effectively exploit genetic diversity in genomic-driven breeding programs with the aim of identifying and introducing new resistances in tomato cultivars. Within this motivating context, we reviewed the repertoire of NB-LRR genes available for tomato improvement with a special focus on signatures of adaptive processes. This issue is still relevant and not thoroughly investigated. We believe that the discovery of mechanisms involved in the generation of a gene with new resistance functions will bring great benefits to future breeding strategies.


Evolution ◽  
2021 ◽  
Author(s):  
Jeff J. Shi ◽  
Erin P. Westeen ◽  
Daniel L. Rabosky

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4840 ◽  
Author(s):  
Kai Wei ◽  
Tingting Zhang ◽  
Lei Ma

Housekeeping genes are ubiquitously expressed and maintain basic cellular functions across tissue/cell type conditions. The present study aimed to develop a set of pig housekeeping genes and compare the structure, evolution and function of housekeeping genes in the human–pig lineage. By using RNA sequencing data, we identified 3,136 pig housekeeping genes. Compared with human housekeeping genes, we found that pig housekeeping genes were longer and subjected to slightly weaker purifying selection pressure and faster neutral evolution. Common housekeeping genes, shared by the two species, achieve stronger purifying selection than species-specific genes. However, pig- and human-specific housekeeping genes have similar functions. Some species-specific housekeeping genes have evolved independently to form similar protein active sites or structure, such as the classical catalytic serine–histidine–aspartate triad, implying that they have converged for maintaining the basic cellular function, which allows them to adapt to the environment. Human and pig housekeeping genes have varied structures and gene lists, but they have converged to maintain basic cellular functions essential for the existence of a cell, regardless of its specific role in the species. The results of our study shed light on the evolutionary dynamics of housekeeping genes.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7484 ◽  
Author(s):  
Amanda E. Haponski ◽  
Diarmaid Ó Foighil

The genus Corbicula consists of estuarine or freshwater clams native to temperate/tropical regions of Asia, Africa, and Australia that collectively encompass both sexual species and clonal (androgenetic) lineages. The latter have become globally invasive in freshwater systems and they represent some of the most successful aquatic invasive lineages. Previous studies have documented four invasive clonal lineages, Forms A, B, C, and Rlc, with varying known distributions. Form A (R in Europe) occurs globally, Form B is found solely in North America, mainly the western United States, Form C (S in Europe) occurs both in European watersheds and in South America, and Rlc is known from Europe. A putative fifth invasive morph, Form D, was recently described in the New World from the Illinois River (Great Lakes watershed), where it occurs in sympatry with Forms A and B. An initial study showed Form D to be conchologically distinct: possessing rust-colored rays and white nacre with purple teeth. However, its genetic distinctiveness using standard molecular markers (mitochondrial cytochrome c oxidase subunit I and nuclear ribosomal 28S RNA) was ambiguous. To resolve this issue, we performed a phylogenomic analysis using 1,699–30,027 nuclear genomic loci collected via the next generation double digested restriction-site associated DNA sequencing method. Our results confirmed Form D to be a distinct invasive New World lineage with a population genomic profile consistent with clonality. A majority (7/9) of the phylogenomic analyses recovered the four New World invasive Corbicula lineages (Forms A, B, C, and D) as members of a clonal clade, sister to the non-clonal Lake Biwa (Japan) endemic, Corbicula sandai. The age of the clonal clade was estimated at 1.49 million years (my; ± 0.401–2.955 my) whereas the estimated ages of the four invasive lineage crown clades ranged from 0.27 to 0.44 my. We recovered very little evidence of nuclear genomic admixture among the four invasive lineages in our study populations. In contrast, 2/6 C. sandai individuals displayed partial nuclear genomic Structure assignments with multiple invasive clonal lineages. These results provide new insights into the origin and maintenance of clonality in this complex system.


mBio ◽  
2013 ◽  
Vol 4 (2) ◽  
Author(s):  
Timothy D. Read ◽  
Sandeep J. Joseph ◽  
Xavier Didelot ◽  
Brooke Liang ◽  
Lisa Patel ◽  
...  

ABSTRACT Chlamydia psittaci is an obligate intracellular bacterium. Interest in Chlamydia stems from its high degree of virulence as an intestinal and pulmonary pathogen across a broad range of animals, including humans. C. psittaci human pulmonary infections, referred to as psittacosis, can be life-threatening, which is why the organism was developed as a bioweapon in the 20th century and is listed as a CDC biothreat agent. One remarkable recent result from comparative genomics is the finding of frequent homologous recombination across the genome of the sexually transmitted and trachoma pathogen Chlamydia trachomatis. We sought to determine if similar evolutionary dynamics occurred in C. psittaci. We analyzed 20 C. psittaci genomes from diverse strains representing the nine known serotypes of the organism as well as infections in a range of birds and mammals, including humans. Genome annotation revealed a core genome in all strains of 911 genes. Our analyses showed that C. psittaci has a history of frequently switching hosts and undergoing recombination more often than C. trachomatis. Evolutionary history reconstructions showed genome-wide homologous recombination and evidence of whole-plasmid exchange. Tracking the origins of recombinant segments revealed that some strains have imported DNA from as-yet-unsampled or -unsequenced C. psittaci lineages or other Chlamydiaceae species. Three ancestral populations of C. psittaci were predicted, explaining the current population structure. Molecular clock analysis found that certain strains are part of a clonal epidemic expansion likely introduced into North America by South American bird traders, suggesting that psittacosis is a recently emerged disease originating in New World parrots. IMPORTANCE Chlamydia psittaci is classified as a CDC biothreat agent based on its association with life-threatening lung disease, termed psittacosis, in humans. Because of the recent remarkable findings of frequent recombination across the genome of the human sexually transmitted and ocular trachoma pathogen Chlamydia trachomatis, we sought to determine if similar evolutionary dynamics occur in C. psittaci. Twenty C. psittaci genomes were analyzed from diverse strains that may play a pathogenic role in human disease. Evolution of the strains revealed genome-wide recombination occurring at a higher rate than for C. trachomatis. Certain strains were discovered to be part of a recent epidemic clonal expansion originating in South America. These strains may have been introduced into the United States from South American bird traders, suggesting that psittacosis is a recently emerged disease originating in New World parrots. Our analyses indicate that C. psittaci strains have a history of frequently switching hosts and undergoing recombination.


<em>Abstract</em>.—The objective of this study is to describe the distribution patterns of abundance and biomass, on a geographic and bathymetric basis, of the main macrourid species of Mozambique waters. Catch data from a demersal trawl survey (<EM>MOZAMBIQUE 07</EM>) were analyzed. The survey covered the continental shelf and upper-middle slope from 17°00’S to 26°50’S and from 100–700 m depth. Fourteen macrourid species were collected from 200 m and deeper. The most abundant species and the highest in biomass were <em>Coelorinchus braueri</em>, <em>C. trunovi, C. denticulatus</em>, <em>Ventrifossa nasuta</em>, and <em>Malacocephalus laevis</em>. Only those five species were analyzed in detail. The occurrence and yields by geographic and bathymetric range of these main species seem to reveal the existence of some species-specific preference for determinate depth ranges and/or geographic areas. Preanal length-weight relationships were estimated for <em>C. braueri, C. trunovi, </em>and <em>V. nasuta</em>: <em>a</em>= 0.00071; 0.00020; 0.00080; <em>b</em>= 2.50; 2.80; 2.76 and <em>r</em><sup>2</sup>= 0.93; 0.97; 0.78, respectively.


Sign in / Sign up

Export Citation Format

Share Document