scholarly journals Self-renewal and differentiation of rat Epididymal basal cells using a novel in vitro organoid model

Author(s):  
Laurie Pinel ◽  
Daniel G Cyr

Abstract The epididymis is composed of a pseudostratified epithelium comprised of various cell types. Studies have shown that rat basal cells share common properties with adult stem cells and begin to differentiate in vitro in response to fibroblast growth factor and 5α-dihydrotestosterone. The characterization of rat basal cells is therefore necessary to fully understand the role of these cells. The objectives of this study were to assess the ability of single basal cells to develop organoids and to assess their ability to self-renew and differentiate in vitro. We isolated basal cells from the rat epididymis and established 3-dimensional cell cultures from the basal and non-basal cell fractions. Organoids were formed by single adult epididymal basal cells. Organoids were dissociated into single basal cells which were able to reform new organoids, and were maintained over 10 generations. Long-term culture of organoids revealed that these cells could differentiated into cells expressing the principal cell markers aquaporin 9 and cystic fibrosis transmembrane conductance regulator. Electron microscopy demonstrated that organoids were comprised of several polarized cell types displaying microvilli and the ability to form tight junctions. Additionally, organoids could be formed by basal cells from either the proximal or distal region of the epididymis, and are able to secrete clusterin, a protein implicated in the maturation of spermatozoa. These data indicate that rat basal cells can be used to derive epididymal organoids, and further supports that notion that these may represent a stem cell population in the epididymis.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Maria G. Roubelakis ◽  
Ourania Trohatou ◽  
Nicholas P. Anagnou

Amniotic fluid (AF) and amniotic membrane (AM) have been recently characterized as promising sources of stem or progenitor cells. Both not only contain subpopulations with stem cell characteristics resembling to adult stem cells, such as mesenchymal stem cells, but also exhibit some embryonic stem cell properties like (i) expression of pluripotency markers, (ii) high expansion in vitro, or (iii) multilineage differentiation capacity. Recent efforts have been focused on the isolation and the detailed characterization of these stem cell types. However, variations in their phenotype, their heterogeneity described by different groups, and the absence of a single marker expressed only in these cells may prevent the isolation of a pure homogeneous stem cell population from these sources and their potential use of these cells in therapeutic applications. In this paper, we aim to summarize the recent progress in marker discovery for stem cells derived from fetal sources such as AF and AM, using novel methodologies based on transcriptomics, proteomics, or secretome analyses.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Briana R Dye ◽  
David R Hill ◽  
Michael AH Ferguson ◽  
Yu-Hwai Tsai ◽  
Melinda S Nagy ◽  
...  

Recent breakthroughs in 3-dimensional (3D) organoid cultures for many organ systems have led to new physiologically complex in vitro models to study human development and disease. Here, we report the step-wise differentiation of human pluripotent stem cells (hPSCs) (embryonic and induced) into lung organoids. By manipulating developmental signaling pathways hPSCs generate ventral-anterior foregut spheroids, which are then expanded into human lung organoids (HLOs). HLOs consist of epithelial and mesenchymal compartments of the lung, organized with structural features similar to the native lung. HLOs possess upper airway-like epithelium with basal cells and immature ciliated cells surrounded by smooth muscle and myofibroblasts as well as an alveolar-like domain with appropriate cell types. Using RNA-sequencing, we show that HLOs are remarkably similar to human fetal lung based on global transcriptional profiles, suggesting that HLOs are an excellent model to study human lung development, maturation and disease.


2016 ◽  
Vol 202 (5-6) ◽  
pp. 269-280 ◽  
Author(s):  
Daniel Martinez Saez ◽  
Robson Tetsuo Sasaki ◽  
Adriana da Costa Neves ◽  
Marcelo Cavenaghi Pereira da Silva

Adult stem cells research has been considered the most advanced sort of medical-scientific research, particularly stem cells from human exfoliated deciduous teeth (SHED), which represent an immature stem cell population. The purpose of this review is to describe the current knowledge concerning SHED from full-text scientific publications from 2003 to 2015, available in English language and based on the keyword and/or abbreviations ‘stem cells from human exfoliated deciduous teeth (SHED)', and individually presented as to the properties of SHED, immunomodulatory properties of SHED and stem cell banking. In summary, these cell populations are easily accessible by noninvasive procedures and can be isolated, cultured and expanded in vitro, successfully differentiated in vitro and in vivo into odontoblasts, osteoblasts, chondrocytes, adipocytes and neural cells, and present low immune reactions or rejection following SHED transplantation. Furthermore, SHED are able to remain undifferentiated and stable after long-term cryopreservation. In conclusion, the high proliferative capacity, easy access, multilineage differentiation capacity, noninvasiveness and few ethical concerns make stem cells from human exfoliated deciduous teeth the most valuable source of stem cells for tissue engineering and cell-based regenerative medicine therapies.


2020 ◽  
Vol 35 (6) ◽  
pp. 709-719 ◽  
Author(s):  
Yang Li ◽  
Xia Cao ◽  
Wenwen Deng ◽  
Qingtong Yu ◽  
Congyong Sun ◽  
...  

Ectomesenchymal stem cells (EMSCs) are typical adult stem cells obtained from the cranial neural crest. They have the potential to differentiate into various cell types, such as osseous cells, neurons and glial cells. Three-dimensional (3 D) printing is a novel method to construct biological structures by rapid prototyping. Previously, our group reported on the stemness and multi-lineage differentiation potential of EMSCs on gels. However, the exploration of EMSCs in 3 D printing and then evaluation of the growth and neuronal differentiation of EMSCs on extruded 3 D printable hybrid hydrogels has not been reported. Therefore, the current study explored the novel hybrid Sodium alginate-Matrigel (SA-MA) hydrogel extruded 3 D printing to design an in vitro scaffold to promote the differentiation and growth of EMSCs. In addition, the physical properties of the hydrogel were characterized and its drug-releasing property determined. Notably, the results showed that the construct exhibited a sustain-released effect of growth factor BDNF in accordance with the Higuchi equation. Moreover, the cell survival rate on the 3 D printed scaffold was 88.22 ± 1.13% with higher neuronal differentiation efficiency compared with 2 D culture. Thus, SA-MA’s ability to enhanced EMSCs neuronal differentiation offers a new biomaterial for neurons regeneration in the treatment of spinal cord injury.


1970 ◽  
Vol 131 (1) ◽  
pp. 57-76 ◽  
Author(s):  
J. S. Haskill ◽  
Pauline Byrt ◽  
J. Marbrook

The BSA density-gradient technique for separating mouse spleen cells into partially purified populations has been used to compare the responsiveness of such populations to SRBC using in vivo and in vitro techniques. Two major populations were distinguished, one of which responded very well in vivo with an exponential dose response and poorly in vitro (fraction 3), and another which responded in vivo and in vitro with a linear dose response (fraction 2). A light density, radiation-resistant component was identified which markedly stimulated the response of fraction 3 in vitro, and a density gradient profile was obtained for this cell which did not correspond with a macrophage profile. A high density, radiation-sensitive cell was identified which stimulated the response of PFC precursors in lighter regions of the gradient. The activity of this cell could be replaced using thymus cells. A density profile for the PFC precursor cell was obtained by assaying small numbers of spleen cell fractions in the presence of an excess of the two auxiliary cell types.


2020 ◽  
Author(s):  
Shweta Gupta

Organoids are a new research tool derived from human pluripotent or adult stem cells or somatic cells in vitro to form small, self-organizing 3-dimensional structures that simulate many of the functions of native organs


2015 ◽  
Vol 112 (36) ◽  
pp. E5068-E5077 ◽  
Author(s):  
Nikolai Schnittke ◽  
Daniel B. Herrick ◽  
Brian Lin ◽  
Jesse Peterson ◽  
Julie H. Coleman ◽  
...  

Adult tissue stem cells can serve two broad functions: to participate actively in the maintenance and regeneration of a tissue or to wait in reserve and participate only when activated from a dormant state. The adult olfactory epithelium, a site for ongoing, life-long, robust neurogenesis, contains both of these functional stem cell types. Globose basal cells (GBCs) act as the active stem cell population and can give rise to all the differentiated cells found in the normal tissue. Horizontal basal cells (HBCs) act as reserve stem cells and remain dormant unless activated by tissue injury. Here we show that HBC activation following injury by the olfactotoxic gas methyl bromide is coincident with the down-regulation of protein 63 (p63) but anticipates HBC proliferation. Gain- and loss-of-function studies show that this down-regulation of p63 is necessary and sufficient for HBC activation. Moreover, activated HBCs give rise to GBCs that persist for months and continue to act as bona fide stem cells by participating in tissue maintenance and regeneration over the long term. Our analysis provides mechanistic insight into the dynamics between tissue stem cell subtypes and demonstrates that p63 regulates the reserve state but not the stem cell status of HBCs.


2015 ◽  
Vol 35 (4) ◽  
pp. 1360-1371 ◽  
Author(s):  
Frauke Hausburg ◽  
Silke Na ◽  
Natalia Voronina ◽  
Anna Skorska ◽  
Paula Müller ◽  
...  

Background: By far, most strategies for cell reprogramming and gene therapy are based on the introduction of DNA after viral delivery. To avoid the high risks accompanying these goals, non-viral and DNA-free delivery methods for various cell types are required. Methods: Relying on an initially established PCR-based protocol for convenient template DNA production, we synthesized five differently modified EGFP mRNA (mmRNA) species, incorporating various degrees of 5-methylcytidine-5'-triphosphate (5mC) and pseudouridine-5'-triphosphate (Ψ). We then investigated their effect on i) protein expression efficiencies and ii) cell viability for human mesenchymal stem cells (hMSCs) and fibroblasts from different origins. Results: Our protocol allows highly efficient mmRNA production in vitro, enabling rapid and stable protein expression after cell transfection. However, our results also demonstrate that the terminally optimal modification needs to be defined in pilot experiments for each particular cell type. Transferring our approach to the conversion of fibroblasts into skeletal myoblasts using mmRNA encoding MyoD, we confirm the huge potential of mmRNA based protein expression for virus- and DNA-free reprogramming strategies. Conclusion: The achieved high protein expression levels combined with good cell viability not only in fibroblasts but also in hMSCs provides a promising option for mmRNA based modification of various cell types including slowly proliferating adult stem cells. Therefore, we are confident that our findings will substantially contribute to the improvement of efficient cell reprogramming and gene therapy approaches.


2003 ◽  
Vol 26 (3) ◽  
pp. 235-240 ◽  
Author(s):  
K. Mueller-Stahl ◽  
T. Kofidis ◽  
P. Akhyari ◽  
B. Wachsmann ◽  
A. Lenz ◽  
...  

Background We demonstrate a method that includes colocalization studies to analyze cell suspensions after isolation and to characterize 3-dimensional grafts consisting of cells and matrix in vitro and in vivo. Materials and methods Neonatal rat cardiomyocytes were labelled by CFDA-SE after harvest. Cells in the isolated cell suspension, the embodied cells in the seeded scaffolds were characterized measuring features such as viability and distribution of the cell types. Results Selective cell count revealed high yields of viable cardiomyocytes. After seeding cells in collagen matrix, viability of the cells decreased gradually in the time process in vitro. Histology of implanted bioartificial myocardial tissue detected viable cardiomyocytes within the graft. Conclusion Using colocalization histology we could label and track cells within the bioartificial myocardial tissue graft in vitro and post implant and assess viability and distribution.


1976 ◽  
Vol 231 (2) ◽  
pp. 501-508 ◽  
Author(s):  
TL Mullen ◽  
M Kashgarian ◽  
D Biemesderfer ◽  
GH Giebisch ◽  
TU Biber

The urinary bladder of Amphiuma exhibits stable transport properties and an electrical potential difference in vitro. The lumen is significantly negative to the serosa and under short-circuited conditions flux rations for Na and Cl of 5.92 +/- 0.42 and 1.81 +/- 0.20, respectively, were observed. The close agreement between the short-circuit current and net Na flux suggests that most, if not all, of the current is carried by Na. Both ouabain and amiloride decreased the short-circuit current and the mucosal-to-serosal (M leads to S) flux of Na. Furosemide caused a transient increase in the M leads to S flux of Na and Cl but ADH was without effect. In bladders that had high transmural resistance, a net movement of K in the M leads to S direction under short-circuited conditions with flux ratios of up to 2 could be observed. The epithelium of the Amphiuma bladder consists of three cell types: granular cells, basal cells, and mitochondria-rich cells. No goblet cells are present. The mitochondria-rich cells comprise less than 5% of the population of the surface epithelium in Amphiuma in contrast to other amphibian bladders, where it accounts for up to 25% of the population.


Sign in / Sign up

Export Citation Format

Share Document