scholarly journals In vitro generation of human pluripotent stem cell derived lung organoids

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Briana R Dye ◽  
David R Hill ◽  
Michael AH Ferguson ◽  
Yu-Hwai Tsai ◽  
Melinda S Nagy ◽  
...  

Recent breakthroughs in 3-dimensional (3D) organoid cultures for many organ systems have led to new physiologically complex in vitro models to study human development and disease. Here, we report the step-wise differentiation of human pluripotent stem cells (hPSCs) (embryonic and induced) into lung organoids. By manipulating developmental signaling pathways hPSCs generate ventral-anterior foregut spheroids, which are then expanded into human lung organoids (HLOs). HLOs consist of epithelial and mesenchymal compartments of the lung, organized with structural features similar to the native lung. HLOs possess upper airway-like epithelium with basal cells and immature ciliated cells surrounded by smooth muscle and myofibroblasts as well as an alveolar-like domain with appropriate cell types. Using RNA-sequencing, we show that HLOs are remarkably similar to human fetal lung based on global transcriptional profiles, suggesting that HLOs are an excellent model to study human lung development, maturation and disease.

Author(s):  
Laurie Pinel ◽  
Daniel G Cyr

Abstract The epididymis is composed of a pseudostratified epithelium comprised of various cell types. Studies have shown that rat basal cells share common properties with adult stem cells and begin to differentiate in vitro in response to fibroblast growth factor and 5α-dihydrotestosterone. The characterization of rat basal cells is therefore necessary to fully understand the role of these cells. The objectives of this study were to assess the ability of single basal cells to develop organoids and to assess their ability to self-renew and differentiate in vitro. We isolated basal cells from the rat epididymis and established 3-dimensional cell cultures from the basal and non-basal cell fractions. Organoids were formed by single adult epididymal basal cells. Organoids were dissociated into single basal cells which were able to reform new organoids, and were maintained over 10 generations. Long-term culture of organoids revealed that these cells could differentiated into cells expressing the principal cell markers aquaporin 9 and cystic fibrosis transmembrane conductance regulator. Electron microscopy demonstrated that organoids were comprised of several polarized cell types displaying microvilli and the ability to form tight junctions. Additionally, organoids could be formed by basal cells from either the proximal or distal region of the epididymis, and are able to secrete clusterin, a protein implicated in the maturation of spermatozoa. These data indicate that rat basal cells can be used to derive epididymal organoids, and further supports that notion that these may represent a stem cell population in the epididymis.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 884
Author(s):  
Marta Cherubini ◽  
Scott Erickson ◽  
Kristina Haase

Acting as the primary link between mother and fetus, the placenta is involved in regulating nutrient, oxygen, and waste exchange; thus, healthy placental development is crucial for a successful pregnancy. In line with the increasing demands of the fetus, the placenta evolves throughout pregnancy, making it a particularly difficult organ to study. Research into placental development and dysfunction poses a unique scientific challenge due to ethical constraints and the differences in morphology and function that exist between species. Recently, there have been increased efforts towards generating in vitro models of the human placenta. Advancements in the differentiation of human induced pluripotent stem cells (hiPSCs), microfluidics, and bioprinting have each contributed to the development of new models, which can be designed to closely match physiological in vivo conditions. By including relevant placental cell types and control over the microenvironment, these new in vitro models promise to reveal clues to the pathogenesis of placental dysfunction and facilitate drug testing across the maternal–fetal interface. In this minireview, we aim to highlight current in vitro placental models and their applications in the study of disease and discuss future avenues for these in vitro models.


Author(s):  
Soichi Shibuya ◽  
Jessica Allen-Hyttinen ◽  
Paolo De Coppi ◽  
Federica Michielin

Abstract Purpose This paper aims to build upon previous work to definitively establish in vitro models of murine pseudoglandular stage lung development. These can be easily translated to human fetal lung samples to allow the investigation of lung development in physiologic and pathologic conditions. Methods Lungs were harvested from mouse embryos at E12.5 and cultured in three different settings, i.e., whole lung culture, mesenchyme-free epithelium culture, and organoid culture. For the whole lung culture, extracted lungs were embedded in Matrigel and incubated on permeable filters. Separately, distal epithelial tips were isolated by firstly removing mesothelial and mesenchymal cells, and then severing the tips from the airway tubes. These were then cultured either in branch-promoting or self-renewing conditions. Results Cultured whole lungs underwent branching morphogenesis similarly to native lungs. Real-time qPCR analysis demonstrated expression of key genes essential for lung bud formation. The culture condition for epithelial tips was optimized by testing different concentrations of FGF10 and CHIR99021 and evaluating branching formation. The epithelial rudiments in self-renewing conditions formed spherical 3D structures with homogeneous Sox9 expression. Conclusion We report efficient protocols for ex vivo culture systems of pseudoglandular stage mouse embryonic lungs. These models can be applied to human samples and could be useful to paediatric surgeons to investigate normal lung development, understand the pathogenesis of congenital lung diseases, and explore novel therapeutic strategies.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Fabienne Archer ◽  
Alexandra Bobet-Erny ◽  
Maryline Gomes

AbstractThe number and severity of diseases affecting lung development and adult respiratory function have stimulated great interest in developing new in vitro models to study lung in different species. Recent breakthroughs in 3-dimensional (3D) organoid cultures have led to new physiological in vitro models that better mimic the lung than conventional 2D cultures. Lung organoids simulate multiple aspects of the real organ, making them promising and useful models for studying organ development, function and disease (infection, cancer, genetic disease). Due to their dynamics in culture, they can serve as a sustainable source of functional cells (biobanking) and be manipulated genetically. Given the differences between species regarding developmental kinetics, the maturation of the lung at birth, the distribution of the different cell populations along the respiratory tract and species barriers for infectious diseases, there is a need for species-specific lung models capable of mimicking mammal lungs as they are of great interest for animal health and production, following the One Health approach. This paper reviews the latest developments in the growing field of lung organoids.


2020 ◽  
Vol 7 (2) ◽  
pp. 36 ◽  
Author(s):  
João P. Cotovio ◽  
Tiago G. Fernandes

Liver disease is one of the leading causes of death worldwide, leading to the death of approximately 2 million people per year. Current therapies include orthotopic liver transplantation, however, donor organ shortage remains a great challenge. In addition, the development of novel therapeutics has been limited due to the lack of in vitro models that mimic in vivo liver physiology. Accordingly, hepatic cell lineages derived from human pluripotent stem cells (hPSCs) represent a promising cell source for liver cell therapy, disease modelling, and drug discovery. Moreover, the development of new culture systems bringing together the multiple liver-specific hepatic cell types triggered the development of hPSC-derived liver organoids. Therefore, these human liver-based platforms hold great potential for clinical applications. In this review, the production of the different hepatic cell lineages from hPSCs, including hepatocytes, as well as the emerging strategies to generate hPSC-derived liver organoids will be assessed, while current biomedical applications will be highlighted.


Author(s):  
Ameen A. Salahudeen ◽  
Shannon S. Choi ◽  
Arjun Rustagi ◽  
Junjie Zhu ◽  
Sean M. de la O ◽  
...  

ABSTRACTThe distal lung contains terminal bronchioles and alveoli that facilitate gas exchange and is affected by disorders including interstitial lung disease, cancer, and SARS-CoV-2-associated COVID-19 pneumonia. Investigations of these localized pathologies have been hindered by a lack of 3D in vitro human distal lung culture systems. Further, human distal lung stem cell identification has been impaired by quiescence, anatomic divergence from mouse and lack of lineage tracing and clonogenic culture. Here, we developed robust feeder-free, chemically-defined culture of distal human lung progenitors as organoids derived clonally from single adult human alveolar epithelial type II (AT2) or KRT5+ basal cells. AT2 organoids exhibited AT1 transdifferentiation potential, while basal cell organoids progressively developed lumens lined by differentiated club and ciliated cells. Organoids consisting solely of club cells were not observed. Upon single cell RNA-sequencing (scRNA-seq), alveolar organoids were composed of proliferative AT2 cells; however, basal organoid KRT5+ cells contained a distinct ITGA6+ITGB4+ mitotic population whose proliferation segregated to a TNFRSF12Ahi subfraction. Clonogenic organoid growth was markedly enriched within the TNFRSF12Ahi subset of FACS-purified ITGA6+ITGB4+ basal cells from human lung or derivative organoids. In vivo, TNFRSF12A+ cells comprised ~10% of KRT5+ basal cells and resided in clusters within terminal bronchioles. To model COVID-19 distal lung disease, we everted the polarity of basal and alveolar organoids to rapidly relocate differentiated club and ciliated cells from the organoid lumen to the exterior surface, thus displaying the SARS-CoV-2 receptor ACE2 on the outwardly-facing apical aspect. Accordingly, basal and AT2 “apical-out” organoids were infected by SARS-CoV-2, identifying club cells as a novel target population. This long-term, feeder-free organoid culture of human distal lung alveolar and basal stem cells, coupled with single cell analysis, identifies unsuspected basal cell functional heterogeneity and exemplifies progenitor identification within a slowly proliferating human tissue. Further, our studies establish a facile in vitro organoid model for human distal lung infectious diseases including COVID-19-associated pneumonia.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi220-vi220
Author(s):  
Hasan Alrefai ◽  
Andee Beierle ◽  
Lauren Nassour ◽  
Nicholas Eustace ◽  
Zeel Patel ◽  
...  

Abstract BACKGROUND The GBM tumor microenvironment (TME) is comprised of a plethora of cancerous and non-cancerous cells that contribute to GBM growth, invasion, and chemoresistance. In-vitro models of GBM typically fail to incorporate multiple cell types. Others have addressed this problem by employing 3D bioprinting to incorporate astrocytes and macrophages in an extracellular matrix; however, they used serum-containing media and classically polarized anti-inflammatory macrophages. Serum has been shown to cause GBM brain-tumor initiating cells to lose their stem-like properties, highlighting the importance of excluding it from these models. Additionally, tumor-associated macrophages (TAMs) do not adhere to the traditional M2 phenotype. METHODS THP-1 monocytes and normal human astrocytes (NHAs) were transitioned into serum-free HL-1 and neurobasal-based media, respectively. Monocytes were stimulated towards a macrophage-like state with PMA and polarized by co-culturing them with GBM patient-derived xenograft(PDX) lines, using a transwell insert. CD206 expression was used to validate polarization and a cytokine array was used to characterize the cells. RESULTS There was no difference in proliferation rates at 72 hours for THP-1 monocytes grown in serum-free HL-1 media compared to serum-containing RPMI 1640 (p > 0.95). Macrophages polarized via transwell inserts expressed the lymphocyte chemoattractant protein, CCL2, whereas resting(M0), pro-inflammatory(M1), and anti-inflammatory(M2) macrophages did not. Additionally, these macrophages expressed more CXCL1 and IL-1ß relative to M1 macrophages. We have also demonstrated a method to maintain a tri-culture model of GBM PDX cells, NHAs, and TAMs in a serum-free media that supports the growth/maintenance of all cell types. CONCLUSIONS We have demonstrated a novel method by which we can polarize macrophages towards a tumor-supportive phenotype that differs in cytokine expression from traditionally polarized macrophages. This higher-fidelity method of modeling TAMs in GBM can aid in the development of targeted therapeutics that may one day enter the clinic in hopes of improving outcomes in GBM.


2020 ◽  
Vol 57 (3) ◽  
pp. 358-368
Author(s):  
Radhakrishna Sura ◽  
Terry Van Vleet ◽  
Brian R. Berridge

High-throughput in vitro models lack human-relevant complexity, which undermines their ability to accurately mimic in vivo biologic and pathologic responses. The emergence of microphysiological systems (MPS) presents an opportunity to revolutionize in vitro modeling for both basic biomedical research and applied drug discovery. The MPS platform has been an area of interdisciplinary collaboration to develop new, predictive, and reliable in vitro methods for regulatory acceptance. The current MPS models have been developed to recapitulate an organ or tissue on a smaller scale. However, the complexity of these models (ie, including all cell types present in the in vivo tissue) with appropriate structural, functional, and biochemical attributes are often not fully characterized. Here, we provide an overview of the capabilities and limitations of the microfluidic MPS model (aka organs-on-chips) within the scope of drug development. We recommend the engagement of pathologists early in the MPS design, characterization, and validation phases, because this will enable development of more robust and comprehensive MPS models that can accurately replicate normal biology and pathophysiology and hence be more predictive of human responses.


2020 ◽  
Vol 21 (22) ◽  
pp. 8484 ◽  
Author(s):  
Kritika Sharma ◽  
Tim U. Krohne ◽  
Volker Busskamp

Retinal degenerative diseases lead to irreversible blindness. Decades of research into the cellular and molecular mechanisms of retinal diseases, using either animal models or human cell-derived 2D systems, facilitated the development of several therapeutic interventions. Recently, human stem cell-derived 3D retinal organoids have been developed. These self-organizing 3D organ systems have shown to recapitulate the in vivo human retinogenesis resulting in morphological and functionally similar retinal cell types in vitro. In less than a decade, retinal organoids have assisted in modeling several retinal diseases that were rather difficult to mimic in rodent models. Retinal organoids are also considered as a photoreceptor source for cell transplantation therapies to counteract blindness. Here, we highlight the development and field’s improvements of retinal organoids and discuss their application aspects as human disease models, pharmaceutical testbeds, and cell sources for transplantations.


1998 ◽  
Vol 334 (3) ◽  
pp. 531-537 ◽  
Author(s):  
Kathleen SCOUGALL ◽  
Neil A. TAYLOR ◽  
Joanne L. JERMANY ◽  
Kevin DOCHERTY ◽  
Kathleen I. J. SHENNAN

PC2 and PC3 are subtilisin-like proteases involved in the maturation of prohormones and proneuropeptides within neuroendocrine cells. They are synthesized as zymogens that undergo autocatalytic maturation within the secretory pathway. Maturation of pro-PC2 is slow (t½ > 8 h), exhibits a pH optimum of 5.5 and is dependent on calcium (K0.5 2 mM), while pro-PC3 maturation is relatively rapid (t½ 15 min), exhibits a neutral pH optimum and is not calcium dependent. These differences in the rates and optimal conditions for activation of the proteases may contribute to the diversity of products generated by these proteases in different cell types. Although highly similar, there are two major differences between pro-PC2 and pro-PC3: the presence of an aspartate at position 310 in pro-PC2 compared with asparagine at the equivalent position in pro-PC3 (and all other members of the subtilisin family), and the N-terminal propeptides, which exhibit low sequence identity (30%). With a view to establishing the structural features that might be responsible for these differences in the maturation of pro-PC2 and pro-PC3, Asp310 in pro-PC2 was mutated to Asn, and Asn309 in pro-PC3 was mutated to Asp. Chimaeric proteins were also made consisting of the pro-region of PC2 fused to the mature portion of PC3 and the pro-region of PC3 fused to the mature region of PC2. The wild-type and mutant DNA constructs were then transcribed and translated in an in vitro system capable of supporting maturation of pro-PC2 and pro-PC3. The results demonstrated that Asp310 of pro-PC2 is responsible for the acidic pH optimum for maturation. Thus changing Asp310 to Asn shifted the pH optimum for maturation to pH 7.0. However, changing Asn309 of pro-PC3 to Asp had no effect on the optimum pH for maturation of pro-PC3. A chimaeric construct containing the propeptide of pro-PC2 attached to PC3 shifted the pH optimum for maturation from pH 7.0 to 6.0 and slowed down the rate of maturation (t½ > 8 h). When attached to PC2, the pro-region of pro-PC3 had no effect on the optimum pH for maturation (pH 5.5–6.0), but it did accelerate the rate of maturation (t½ 2 h). These results demonstrate that Asp310 and the pro-region of pro-PC2 contribute to the acidic pH optimum and low rate of maturation of this zymogen relative to its closely related homologue PC3.


Sign in / Sign up

Export Citation Format

Share Document