Effects of LPXRFamide peptides on chub mackerel gonadotropin secretion

Author(s):  
Hirofumi Ohga ◽  
Michiya Matsuyama

Abstract Gonadotropin-inhibitory hormone (GnIH), a neuropeptide, suppresses gonadotropin (GTH) secretion in birds and mammals. In fish, the GnIH homolog LPXRFamide (LPXRFa) produces mature peptides with species-dependent effects on sexual reproduction. Here, we investigated the effects of LPXRFa on GTH secretion in the chub mackerel (cm; Scomber japonicus). We cloned cmlpxrfa (603 bp) and cmlpxrfa-r (1,416 bp). Additionally, we isolated lpxrfa from the bluefin tuna (Thunnus orientalis) to confirm the conservation of the LPXRFa mature sequence. Phylogenetic analysis showed that the LPXRFa precursor protein produces three mature peptides, LPXRFa-1, −2, and − 3, in both species. Reverse transcription-quantitative PCR revealed that cmlpxrfa is expressed in the hypothalamus and thalamus and midbrain (T.MB), and sexual differences were observed. Receptor expression was observed in the pre-optic area, hypothalamus, T.MB, and pituitary. Female hypothalamic lpxrfa expression did not change during puberty. Reporter gene assay showed that LPXRFa induced receptor activation via the CRE and SRE signaling pathways. However, in the presence of forskolin, an intracellular cyclic AMP enhancer, none of the LPXRFa could suppress receptor activity. The in vitro bioassay results showed that gonadotropin-releasing hormone-1 (GnRH1) had no effect on follicle-stimulating hormone (FSH) secretion, whereas the three LPXRFa significantly increased FSH secretion in pituitary cells from male chub mackerel. Contrarily, GnRH1 and three LPXRFa significantly increased luteinizing hormone (LH) secretion. The in vivo administration of LPXRFa had no effect on fshb and lhb expression in pre-pubertal and mature male chub mackerel. Overall, cmLPXRFa lacks the ability to suppress GTH secretion but can promote GTH secretion.

2007 ◽  
Vol 7 ◽  
pp. 1422-1439 ◽  
Author(s):  
Magnus Bäck

The accumulation of immune cells during vascular inflammation leads to formation of leukotrienes (LTs). While macrophages represent a major source of LT biosynthesis in the proximity of the vascular wall, activated T lymphocytes may, in addition, play a key regulatory role on macrophage expression of LT-forming enzymes. Within the vascular wall, LTs activate cell surface receptors of the BLT and CysLT subtypes expressed on vascular smooth muscle and endothelial cells. The LT receptor expression on those cells is highly dependent on transcriptional regulation by pro- and anti-inflammatory mediators. LT receptor activation on vascular smooth muscle cells is associated with both directly and indirectly induced vasoconstriction, as well as intimal hyperplasia through stimulation of migration and proliferation. On the other hand, endothelial LT receptors induce vasorelaxation and leukocyte recruitment and adhesion. Results fromin vitroandin vivostudies of LT receptor antagonists indicate potential beneficial effects in atherosclerosis and other inflammatory cardiovascular diseases.


Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1902-1913 ◽  
Author(s):  
R. Pineda ◽  
D. Garcia-Galiano ◽  
M. A. Sanchez-Garrido ◽  
M. Romero ◽  
F. Ruiz-Pino ◽  
...  

Identification of RF-amide-related peptides (RFRP), as putative mammalian orthologs of the avian gonadotropin-inhibitory hormone, has drawn considerable interest on its potential effects and mechanisms of action in the control of gonadotropin secretion in higher vertebrates. Yet, these analyses have so far relied mostly on indirect approaches, while direct assessment of their physiological roles has been hampered by the lack of suitable antagonists. RF9 was recently reported as a selective and potent antagonist of the receptors for RFRP (RFRPR) and the related neuropeptides, neuropeptide FF (NPFF) and neuropeptide AF (NPFF receptor). We show here that RF9 possesses very strong gonadotropin-releasing activities in vivo. Central administration of RF9 evoked a dose-dependent increase of LH and FSH levels in adult male and female rats. Similarly, male and female mice responded to intracerebroventricular injection of RF9 with robust LH secretory bursts. In rats, administration of RF9 further augmented the gonadotropin-releasing effects of kisspeptin, and its stimulatory effects were detected despite the prevailing suppression of gonadotropin secretion by testosterone or estradiol. In fact, blockade of estrogen receptor-α partially attenuated gonadotropin responses to RF9. Finally, systemic administration of RF9 modestly stimulated LH secretion in vivo, although no direct effects in terms of gonadotropin secretion were detected at the pituitary in vitro. Altogether, these data are the first to disclose the potent gonadotropin-releasing activity of RF9, a selective antagonist of RFRP (and NPFF) receptors. Our findings support a putative role of the RFRP/gonadotropin-inhibitory hormone system in the central control of gonadotropin secretion in mammals and have interesting implications concerning the potential therapeutic indications and pharmacological effects of RF9.


2014 ◽  
Vol 223 (2) ◽  
pp. 191-202 ◽  
Author(s):  
M Moussavi ◽  
M Wlasichuk ◽  
J P Chang ◽  
H R Habibi

To understand how gonadotropin-inhibitory hormone (GnIH) regulates goldfish GH cell functions, we monitored GH release and expression during early, mid-, and/or late gonadal recrudescence. In vivo and in vitro responses to goldfish (g) GnIH were different, indicating direct action at the level of pituitary, as well as interactions with other neuroendocrine factors involved in GH regulation. Injection of gGnIH consistently reduced basal serum GH levels but elevated pituitary gh mRNA levels, indicating potential dissociation of GH release and synthesis. Goldfish GnRH (sGnRH and cGnRHII) injection differentially stimulated serum GH and pituitary gh mRNA levels with some seasonal differences; these responses were reduced by gGnIH. In contrast, in vitro application of gGnIH during 24-h static incubation of goldfish pituitary cells generally elevated basal GH release and attenuated sGnRH-induced changes in gh mRNA, while suppressing basal gh mRNA levels at mid- and late recrudescence but elevating them at early recrudescence. gGnIH attenuated the GH release responses to sGnRH during static incubation at early, but not at mid- and late recrudescence. In cell column perifusion experiments examining short-term GH release, gGnIH reduced the cGnRHII- and sGnRH-stimulated secretion at late recrudescence but inhibited tha action of cGnRHII only during mid-recrudescence. Interestingly, a reduction of basal GH release upon perifusion with gGnIH during late recrudescence was followed by a rebound increase in GH release upon gGnIH removal. These results indicate that gGnIH exerts complex effects on basal and GnRH-stimulated goldfish GH cell functions and can differentially affect GH release and mRNA expression in a seasonal reproductive manner.


2021 ◽  
Vol 22 (5) ◽  
pp. 2530
Author(s):  
Bijean D. Ford ◽  
Diego Moncada Giraldo ◽  
Camilla Margaroli ◽  
Vincent D. Giacalone ◽  
Milton R. Brown ◽  
...  

Cystic fibrosis (CF) lung disease is dominated by the recruitment of myeloid cells (neutrophils and monocytes) from the blood which fail to clear the lung of colonizing microbes. In prior in vitro studies, we showed that blood neutrophils migrated through the well-differentiated lung epithelium into the CF airway fluid supernatant (ASN) mimic the dysfunction of CF airway neutrophils in vivo, including decreased bactericidal activity despite an increased metabolism. Here, we hypothesized that, in a similar manner to neutrophils, blood monocytes undergo significant adaptations upon recruitment to CFASN. To test this hypothesis, primary human blood monocytes were transmigrated in our in vitro model into the ASN from healthy control (HC) or CF subjects to mimic in vivo recruitment to normal or CF airways, respectively. Surface phenotype, metabolic and bacterial killing activities, and transcriptomic profile by RNA sequencing were quantified post-transmigration. Unlike neutrophils, monocytes were not metabolically activated, nor did they show broad differences in activation and scavenger receptor expression upon recruitment to the CFASN compared to HCASN. However, monocytes recruited to CFASN showed decreased bactericidal activity. RNASeq analysis showed strong effects of transmigration on monocyte RNA profile, with differences between CFASN and HCASN conditions, notably in immune signaling, including lower expression in the former of the antimicrobial factor ISG15, defensin-like chemokine CXCL11, and nitric oxide-producing enzyme NOS3. While monocytes undergo qualitatively different adaptations from those seen in neutrophils upon recruitment to the CF airway microenvironment, their bactericidal activity is also dysregulated, which could explain why they also fail to protect CF airways from infection.


Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 11-26
Author(s):  
Maike Busch ◽  
Natalia Miroschnikov ◽  
Jaroslaw Thomas Dankert ◽  
Marc Wiesehöfer ◽  
Klaus Metz ◽  
...  

BACKGROUND: Retinoblastoma (RB) is the most common childhood eye cancer. Chemotherapeutic drugs such as etoposide used in RB treatment often cause massive side effects and acquired drug resistances. Dysregulated genes and miRNAs have a large impact on cancer progression and development of chemotherapy resistances. OBJECTIVE: This study was designed to investigate the involvement of retinoic acid receptor alpha (RARα) in RB progression and chemoresistance as well as the impact of miR-138, a potential RARα regulating miRNA. METHODS: RARα and miR-138 expression in etoposide resistant RB cell lines and chemotherapy treated patient tumors compared to non-treated tumors was revealed by Real-Time PCR. Overexpression approaches were performed to analyze the effects of RARα on RB cell viability, apoptosis, proliferation and tumorigenesis. Besides, we addressed the effect of miR-138 overexpression on RB cell chemotherapy resistance. RESULTS: A binding between miR-138 and RARα was shown by dual luciferase reporter gene assay. The study presented revealed that RARα is downregulated in etoposide resistant RB cells, while miR-138 is endogenously upregulated. Opposing RARα and miR-138 expression levels were detectable in chemotherapy pre-treated compared to non-treated RB tumor specimen. Overexpression of RARα increases apoptosis levels and reduces tumor cell growth of aggressive etoposide resistant RB cells in vitro and in vivo. Overexpression of miR-138 in chemo-sensitive RB cell lines partly enhances cell viability after etoposide treatment. CONCLUSIONS: Our findings show that RARα acts as a tumor suppressor in retinoblastoma and is downregulated upon etoposide resistance in RB cells. Thus, RARα may contribute to the development and progression of RB chemo-resistance.


2021 ◽  
Vol 9 (4) ◽  
pp. 868
Author(s):  
Max Maurin ◽  
Florence Fenollar ◽  
Oleg Mediannikov ◽  
Bernard Davoust ◽  
Christian Devaux ◽  
...  

SARS-CoV-2 is currently considered to have emerged from a bat coronavirus reservoir. However, the real natural cycle of this virus remains to be elucidated. Moreover, the COVID-19 pandemic has led to novel opportunities for SARS-CoV-2 transmission between humans and susceptible animal species. In silico and in vitro evaluation of the interactions between the SARS-CoV-2 spike protein and eucaryotic angiotensin-converting enzyme 2 (ACE2) receptor have tentatively predicted susceptibility to SARS-CoV-2 infection of several animal species. Although useful, these data do not always correlate with in vivo data obtained in experimental models or during natural infections. Other host biological properties may intervene such as the body temperature, level of receptor expression, co-receptor, restriction factors, and genetic background. The spread of SARS-CoV-2 also depends on the extent and duration of viral shedding in the infected host as well as population density and behaviour (group living and grooming). Overall, current data indicate that the most at-risk interactions between humans and animals for COVID-19 infection are those involving certain mustelids (such as minks and ferrets), rodents (such as hamsters), lagomorphs (especially rabbits), and felines (including cats). Therefore, special attention should be paid to the risk of SARS-CoV-2 infection associated with pets.


Life Sciences ◽  
2021 ◽  
Vol 278 ◽  
pp. 119541
Author(s):  
Aysegul Gorur ◽  
Miguel Patiño ◽  
Hideaki Takahashi ◽  
German Corrales ◽  
Curtis R. Pickering ◽  
...  

2019 ◽  
Vol 20 (8) ◽  
pp. 1916 ◽  
Author(s):  
Marc L. Sprouse ◽  
Thomas Welte ◽  
Debasish Boral ◽  
Haowen N. Liu ◽  
Wei Yin ◽  
...  

Intratumoral infiltration of myeloid-derived suppressor cells (MDSCs) is known to promote neoplastic growth by inhibiting the tumoricidal activity of T cells. However, direct interactions between patient-derived MDSCs and circulating tumors cells (CTCs) within the microenvironment of blood remain unexplored. Dissecting interplays between CTCs and circulatory MDSCs by heterotypic CTC/MDSC clustering is critical as a key mechanism to promote CTC survival and sustain the metastatic process. We characterized CTCs and polymorphonuclear-MDSCs (PMN-MDSCs) isolated in parallel from peripheral blood of metastatic melanoma and breast cancer patients by multi-parametric flow cytometry. Transplantation of both cell populations in the systemic circulation of mice revealed significantly enhanced dissemination and metastasis in mice co-injected with CTCs and PMN-MDSCs compared to mice injected with CTCs or MDSCs alone. Notably, CTC/PMN-MDSC clusters were detected in vitro and in vivo either in patients’ blood or by longitudinal monitoring of blood from animals. This was coupled with in vitro co-culturing of cell populations, demonstrating that CTCs formed physical clusters with PMN-MDSCs; and induced their pro-tumorigenic differentiation through paracrine Nodal signaling, augmenting the production of reactive oxygen species (ROS) by PMN-MDSCs. These findings were validated by detecting significantly higher Nodal and ROS levels in blood of cancer patients in the presence of naïve, heterotypic CTC/PMN-MDSC clusters. Augmented PMN-MDSC ROS upregulated Notch1 receptor expression in CTCs through the ROS-NRF2-ARE axis, thus priming CTCs to respond to ligand-mediated (Jagged1) Notch activation. Jagged1-expressing PMN-MDSCs contributed to enhanced Notch activation in CTCs by engagement of Notch1 receptor. The reciprocity of CTC/PMN-MDSC bi-directional paracrine interactions and signaling was functionally validated in inhibitor-based analyses, demonstrating that combined Nodal and ROS inhibition abrogated CTC/PMN-MDSC interactions and led to a reduction of CTC survival and proliferation. This study provides seminal evidence showing that PMN-MDSCs, additive to their immuno-suppressive roles, directly interact with CTCs and promote their dissemination and metastatic potency. Targeting CTC/PMN-MDSC heterotypic clusters and associated crosstalks can therefore represent a novel therapeutic avenue for limiting hematogenous spread of metastatic disease.


1997 ◽  
Vol 77 (5) ◽  
pp. 2427-2445 ◽  
Author(s):  
Heath S. Lukatch ◽  
M. Bruce Maciver

Lukatch, Heath S. and M. Bruce MacIver. Physiology, pharmacology, and topography of cholinergic neocortical oscillations in vitro. J. Neurophysiol. 77: 2427–2445, 1997. Rat neocortical brain slices generated rhythmic extracellular field [microelectroencephalogram (micro-EEG)] oscillations at theta frequencies (3–12 Hz) when exposed to pharmacological conditions that mimicked endogenous ascending cholinergic and GABAergic inputs. Use of the specific receptor agonist and antagonist carbachol and bicuculline revealed that simultaneous muscarinic receptor activation and γ-aminobutyric acid-A (GABAA)-mediated disinhibition werenecessary to elicit neocortical oscillations. Rhythmic activity was independent of GABAB receptor activation, but required intact glutamatergic transmission, evidenced by blockade or disruption of oscillations by 6-cyano-7-nitroquinoxaline-2,3-dione and (±)-2-amino-5-phosphonovaleric acid, respectively. Multisite mapping studies showed that oscillations were localized to areas 29d and 18b (Oc2MM) and parts of areas 18a and 17. Peak oscillation amplitudes occurred in layer 2/3, and phase reversals were observed in layers 1 and 5. Current source density analysis revealed large-amplitude current sinks and sources in layers 2/3 and 5, respectively. An initial shift in peak inward current density from layer 1 to layer 2/3 indicated that two processes underlie an initial depolarization followed by oscillatory activity. Laminar transections localized oscillation-generating circuitry to superficial cortical layers and sharp-spike-generating circuitry to deep cortical layers. Whole cell recordings identified three distinct cell types based on response properties during rhythmic micro-EEG activity: oscillation-on (theta-on) and -off (theta-off) neurons, and transiently depolarizing glial cells. Theta-on neurons displayed membrane potential oscillations that increased in amplitude with hyperpolarization (from −30 to −90 mV). This, taken together with a glutamate antagonist-induced depression of rhythmic micro-EEG activity, indicated that cholinergically driven neocortical oscillations require excitatory synaptic transmission. We conclude that under the appropriate pharmacological conditions, neocortical brain slices were capable of producing localized theta frequency oscillations. Experiments examining oscillation physiology, pharmacology, and topography demonstrated that neocortical brain slice oscillations share many similarities with the in vivo and in vitro theta EEG activity recorded in other brain regions.


1985 ◽  
Vol 40 (4) ◽  
pp. 297-302 ◽  
Author(s):  
David R. Mann ◽  
Diane Evans ◽  
Festus Edoimioya ◽  
Freja Kamel ◽  
George M. Butterstein

Sign in / Sign up

Export Citation Format

Share Document