scholarly journals Prenatal exposure to di-(2-ethylhexyl) phthalate and high-fat diet synergistically disrupts mouse fetal oogenesis and affects folliculogenesis†

2019 ◽  
Vol 100 (6) ◽  
pp. 1561-1570 ◽  
Author(s):  
Supipi Mirihagalle ◽  
Tianming You ◽  
Lois Suh ◽  
Chintan Patel ◽  
Liying Gao ◽  
...  

Abstract Di-(2-ethylhexyl) phthalate (DEHP) is a chemical that is widely used as a plasticizer. Exposure to DEHP has been shown to alter ovarian function in humans. Additionally, foods high in fat content, regularly found in the western diet, have been shown to be another potential disruptor of fetal ovarian function. Due to DEHP’s lipophilicity, high-fat foods can be easily contaminated. Therefore, exposure to DEHP and a high-fat diet are both health concerns, especially in pregnant women, and the effects of these exposures on fetal oocyte quality and quantity should be elucidated. In this study, our goal was to determine if there are synergistic effects of DEHP exposure at an environmentally relevant level (20 μg/kg body weight/day) and high-fat diet on oogenesis and folliculogenesis. Dams were fed with a high-fat diet (45 kcal% fat) or a control diet (10 kcal% fat) 1 week before mating and during pregnancy and lactation. The pregnant mice were dosed with DEHP (20 μg/kg body weight/day) or vehicle control from E10.5 to litter birth. We found that treatment with an environmentally relevant dosage of DEHP and consumption of high-fat diet significantly increases synapsis defects in meiosis and affects folliculogenesis in the F1 generation.

2016 ◽  
Vol 48 (7) ◽  
pp. 491-501 ◽  
Author(s):  
Madeliene Stump ◽  
Deng-Fu Guo ◽  
Ko-Ting Lu ◽  
Masashi Mukohda ◽  
Xuebo Liu ◽  
...  

Peroxisome proliferator-activated receptor-γ (PPARγ), a master regulator of adipogenesis, was recently shown to affect energy homeostasis through its actions in the brain. Deletion of PPARγ in mouse brain, and specifically in the pro-opiomelanocortin (POMC) neurons, results in resistance to diet-induced obesity. To study the mechanisms by which PPARγ in POMC neurons controls energy balance, we constructed a Cre-recombinase-dependent conditionally activatable transgene expressing either wild-type (WT) or dominant-negative (P467L) PPARγ and the tdTomato reporter. Inducible expression of both forms of PPARγ was validated in cells in culture, in liver of mice infected with an adenovirus expressing Cre-recombinase (AdCre), and in the brain of mice expressing Cre-recombinase either in all neurons (NESCre/PPARγ-P467L) or selectively in POMC neurons (POMCCre/PPARγ-P467L). Whereas POMCCre/PPARγ-P467L mice exhibited a normal pattern of weight gain when fed 60% high-fat diet, they exhibited increased weight gain and fat mass accumulation in response to a 10% fat isocaloric-matched control diet. POMCCre/PPARγ-P467L mice were leptin sensitive on control diet but became leptin resistant when fed 60% high-fat diet. There was no difference in body weight between POMCCre/PPARγ-WT mice and controls in response to 60% high-fat diet. However, POMCCre/PPARγ-WT, but not POMCCre/PPARγ-P467L, mice increased body weight in response to rosiglitazone, a PPARγ agonist. These observations support the concept that alterations in PPARγ-driven mechanisms in POMC neurons can play a role in the regulation of metabolic homeostasis under certain dietary conditions.


2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Saki Shirako ◽  
Yumi Kojima ◽  
Naohiro Tomari ◽  
Yasushi Nakamura ◽  
Yasuki Matsumura ◽  
...  

Abstract PyroGlu-Leu is present in certain food protein hydrolysates and traditional Japanese fermented foods. Our previous study demonstrated that the oral administration of pyroGlu-Leu (0.1 mg/kg body weight) attenuates dysbiosis in mice with experimental colitis. The objective of this study was to elucidate why such a low dose of pyroGlu-Leu attenuates dysbiosis in different animal models. High fat diet extensively increased the ratio of Firmicutes/Bacteroidetes in feces of rats compared to control diet. Oral administration of pyroGlu-Leu (1 mg/kg body weight) significantly attenuated high fat diet-induced dysbiosis. By focusing on the production of intestinal antimicrobial peptides, we found that pyroGlu-Leu significantly increased the level of 4962 Da peptides, which identified as the propeptide of rattusin or defensin alpha 9, in ileum. We also observed increased tryptic fragment peptides from rattusin in the lumen. Here, we report that orally administered pyroGlu-Leu attenuates dysbiosis by increasing in the host antimicrobial peptide, rattusin.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Yunjung Baek ◽  
Mi Nam Lee ◽  
Dayong Wu ◽  
Munkyong Pae

Abstract Objectives Previously, we showed that loss of ovarian function in mice fed high-fat diet exacerbated insulin resistance and adipose tissue inflammation. In the current study, we tested whether consumption of luteolin, an anti-inflammatory flavonoid, could mitigate adipose tissue inflammation and insulin resistance in obese ovariectomized mice. Methods Nine-week-old ovariectomized C57BL/6 mice were fed a low-fat diet (LFD), high-fat diet (HFD), or HFD supplemented with 0.005% luteolin (HFD + L) for 16 weeks. The anti-inflammatory drug salicylate was used as a positive control. Fasting blood glucose, insulin, and insulin resistance index HOMA-IR were measured every 4 weeks. Adipose tissue and spleen were characterized for tissue inflammation by real-time PCR and immune cell populations by flow cytometry after 16 weeks of feeding. Results HFD resulted in more body weight gain than LFD in ovariectomized mice and supplementing HFD with 0.005% luteolin did not affect the body weight gain. In addition, HFD elicited a significant elevation in fat mass, which were comparable between HFD and HFD + L groups. However, luteolin supplementation resulted in a significant decrease in CD11c+ macrophages in gonadal adipose tissue, as well as a trend of decrease in macrophage infiltration. Luteolin supplementation also significantly decreased mRNA expression of inflammatory and M1 markers MCP-1, CD11c, TNF-a, and IL-6, while maintaining expression of M2 marker MGL1. We further found that luteolin treatment protected mice from insulin resistance induced by HFD consumption; this improved insulin resistance was correlated with reductions in CD11c+ adipose tissue macrophages. Conclusions Our findings indicate that dietary luteolin supplementation attenuates adipose tissue inflammation and insulin resistance found in mice with loss of ovarian function coupled with a HFD intake, and this effect may be partly mediated through suppressing M1-like polarization of macrophages in adipose tissue. These results have clinical implication in implementing dietary intervention for prevention of metabolic syndrome associated with postmenopause and obesity. Funding Sources Supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2018R1A1A1A05078886).


2019 ◽  
Vol 109 (2) ◽  
pp. 113-130 ◽  
Author(s):  
Olaya Fernández-Gayol ◽  
Paula Sanchis ◽  
Kevin Aguilar ◽  
Alicia Navarro-Sempere ◽  
Gemma Comes ◽  
...  

Background/Aims: Interleukin-6 (IL-6) is a major cytokine controlling body weight and metabolism, at least in part through actions in the central nervous system (CNS) from local sources. Methods: We herewith report results obtained in conditional IL-6 KO mice for brain cells (Il6ΔGfap and Il6ΔSyn). Results: The reporter RiboTag mouse line demonstrated specific astrocytic expression of GFAP-dependent Cre in the hypothalamus but not in other brain areas, whereas that of synapsin 1-dependent Cre was specific for neurons. Feeding a high-fat diet (HFD) or a control diet showed that Il6ΔGfap and Il6ΔSyn mice were more prone and resistant, respectively, to HFD-induced obesity. Energy intake was not altered in HFD experiments, but it was reduced in Il6ΔSyn male mice following a 24-h fast. HFD increased circulating insulin, leptin, and cholesterol levels, decreased triglycerides, and caused impaired responses to the insulin and glucose tolerance tests. In Il6ΔGfap mice, the only significant difference observed was an increase in insulin levels of females, whereas in Il6ΔSyn mice the effects of HFD were decreased. Hypothalamic Agrp expression was significantly decreased by HFD, further decreased in Il6ΔGfap, and increased in Il6ΔSyn female mice. Hypothalamic Il-6 mRNA levels were not decreased in Il6ΔSyn mice and even increased in Il6ΔGfapmale mice. Microarray analysis of hypothalamic RNA showed that female Il6ΔGfap mice had increased interferon-related pathways and affected processes in behavior, modulation of chemical synaptic transmission, learning, and memory. Conclusion: The present results demonstrate that brain production of IL-6 regulates body weight in the context of caloric excess and that the cellular source is critical.


2005 ◽  
Vol 17 (9) ◽  
pp. 105 ◽  
Author(s):  
C. E. Minge ◽  
B. D. Bennett ◽  
V. Tsagareli ◽  
R. J. Norman ◽  
M. Lane ◽  
...  

Obesity and its related complications (metabolic syndrome, Type II diabetes and polycystic ovary syndrome) are increasingly associated with female infertility. Our research is focused on understanding how diet-induced obesity, which triggers insulin resistance and symptoms of chronic inflammation, directly impacts ovarian function and female fertility. Female mice were maintained on a “Western style” diet (22% fat, 0.15% cholesterol) or a matched control diet. Body weights were monitored weekly and after 16 weeks fasting insulin levels and glucose tolerance were assessed. Mice were then paired with males and tissues collected on day 1 on pregnancy. Blood samples were taken to determine levels of progesterone, metabolites (glucose, HDL/LDL) and inflammatory cytokines. Tissue weights (fat pads, liver, kidney, spleen, pancreas, ovary and uterus) were recorded and the reproductive tissues were fixed for analysis of histology and gene expression. Zygotes were isolated from the oviduct, cultured in vitro and scored for on-time development and differentially stained to assess blastocyst quality. Indices of ovarian function, including ovulation rate, steroid production and oocyte quality/blastocyst development will then be correlated with degrees of insulin resistance, dyslipidemia and inflammation. Five strains of mice were tested (CBA, Balb/c, C57, SV129 and Swiss) and showed significant differences in susceptibility to diet-induced obesity and insulin resistance. In CBA mice, the first group to be completed, the high fat diet significantly increased body weight, but did not result in overtly impaired glucose tolerance. The number of days to mating was slightly extended compared to mice on the control diet. Interestingly, the high fat diet did not affect ovulation rate but resulted in dramatically impaired blastocyst development. The results of this study will reveal how ovarian folliculogenesis, oocyte competence and ovulation are affected by obesity-induced metabolic changes, which are increasingly affecting women of reproductive age.


2017 ◽  
Vol 28 (3) ◽  
pp. 748-759 ◽  
Author(s):  
Dominika Stygar ◽  
Tomasz Sawczyn ◽  
Bronisława Skrzep-Poloczek ◽  
Aleksander J. Owczarek ◽  
Natalia Matysiak ◽  
...  

2014 ◽  
Vol 306 (1) ◽  
pp. R34-R44 ◽  
Author(s):  
Beatriz de Carvalho Borges ◽  
Rodrigo Rorato ◽  
Ernane Torres Uchoa ◽  
Paula Marangon ◽  
Glauber S. F. da Silva ◽  
...  

Hypophagia induced by inflammation is associated with Janus kinase (JAK)-2/signal transducer and activator of transcription (STAT) 3 signaling pathway, and leptin-mediated hypophagia is also mediated by JAK2-STAT3 pathway. We have previously reported that lipopolysaccharide (LPS) did not reduce food intake in leptin-resistant high-fat diet (HFD) rats but maintained body weight loss. We investigated whether changes in p-STAT3 expression in the hypothalamus and brain stem could account for the desensitization of hypophagia in HFD animals after a low LPS dose (100 μg/kg). Wistar rats fed standard diet (3.95 kcal/g) or HFD (6.3 kcal/g) for 8 wk were assigned into control diet-saline, control diet-LPS, HFD-saline, and HFD-LPS groups. LPS reduced feeding in the control diet but not HFD. This group showed no p-STAT3 expression in the paraventricular nucleus (PVN) and ventromedial hypothalamic nucleus (VMH), but sustained, though lower than control, p-STAT3 in the nucleus of the solitary tract (NTS) and raphe pallidus (RPa). LPS decreased body weight in HFD rats and increased Fos expression in the NTS. LPS increased body temperature, oxygen consumption, and energy expenditure in both control diet and HFD rats, and this response was more pronounced in HFD-LPS group. Brown adipose tissue (BAT) thermogenesis and increased energy expenditure seem to contribute to body weight loss in HFD-LPS. This response might be related with increased brain stem activation. In conclusion, LPS activates STAT3-mediated pathway in the hypothalamus and brain stem, leading to hypophagia, however, LPS effects on food intake, but not body weight loss, are abolished by leptin resistance induced by HFD. The preserved STAT3 phosphorylation in the brain stem suggests that unresponsiveness to LPS on STAT3 activation under HFD might be selective to the hypothalamus.


Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2475 ◽  
Author(s):  
Hyun Sook Lee ◽  
Su-Min Lim ◽  
Jae In Jung ◽  
So Mi Kim ◽  
Jae Kyoung Lee ◽  
...  

Gynostemma pentaphyllum is widely used in Asia as a herbal medicine to treat type 2 diabetes, dyslipidemia, and inflammation. Here, we investigated the anti-obesity effect and underlying mechanism of G. pentaphyllum extract (GPE) enriched in gypenoside L, gypenoside LI, and ginsenoside Rg3 and obtained using a novel extraction method. Five-week-old male C57BL/6N mice were fed a control diet (CD), high-fat diet (HFD), HFD + 100 mg/kg body weight (BW)/day GPE (GPE 100), HFD + 300 mg/kg BW/day GPE (GPE 300), or HFD + 30 mg/kg BW/day Orlistat (Orlistat 30) for 8 weeks. The HFD-fed mice showed significant increases in body weight, fat mass, white adipose tissue, and adipocyte hypertrophy compared to the CD group; but GPE inhibited those increases. GPE reduced serum levels of triglyceride, total cholesterol, and LDL-cholesterol, without affecting HDL-cholesterol. GPE significantly increased AMPK activation and suppressed adipogenesis by decreasing the mRNA expression of CCAAT/enhancer binding protein-α (C/EBPα), peroxisome proliferator-activated receptor-γ (PPARγ), sterol regulatory element-binding protein-1c (SREBP1c), PPARγ coactivator-1α, fatty acid synthase (FAS), adipocyte protein 2 (AP2), and sirtuin 1 (SIRT1) and by increasing that of carnitine palmitoyltransferase (CPT1) and hormone- sensitive lipase (HSL). This study demonstrated the ameliorative effect of GPE on obesity and elucidated the underlying molecular mechanism.


2012 ◽  
Vol 303 (2) ◽  
pp. E293-E300 ◽  
Author(s):  
Hisashi Masuyama ◽  
Yuji Hiramatsu

The constitutive androstane receptor (CAR) has been reported to decrease insulin resistance even during pregnancy, while exposure to a high-fat diet (HFD) in utero in mice can induce a type 2 diabetes phenotype that can be transmitted to the progeny. Therefore, we examined whether treatment with a CAR ligand during pregnancy could prevent hypertension, insulin resistance, and hyperlipidemia in the offspring from HFD-induced obese pregnant mice (OH mice). We employed four groups of offspring from HFD-fed and control diet-fed pregnant mice with or without treatment with a CAR ligand. Treatment with a CAR ligand during pregnancy improved glucose tolerance and the levels of triglyceride and adipocytokine and restored the changes induced by HFD with amelioration of hypertension in the adult OH mice. This treatment also increased adiponectin mRNA expression, suppressed leptin expression in adipose tissues of OH mice, and abolished the effect of HFD on the epigenetic modifications of the genes encoding adiponectin and leptin in the offspring during immaturity and adulthood. Our data suggest that CAR might be a potential therapeutic target to prevent metabolic syndrome in adulthood of offspring exposed to an HFD in utero.


Sign in / Sign up

Export Citation Format

Share Document