scholarly journals Nicotine Upregulates Metalloproteinase Function in Vascular Smooth Muscle Cells Inducing Cell Migration

2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 376-376
Author(s):  
Ann Centner ◽  
Abigail Cullen ◽  
Gloria Salazar

Abstract Objectives We hypothesize that nicotine plays a role in the progression of atherosclerosis by inducing VSMC phenotypic switching and cell migration from the media to an inner layer–the intima. This forms a new layer called the neointima, which becomes a plaque with a lipid-rich necrotic core and fibrous VSMC cap. The cap confers protection against plaque rupture and stroke or heart attack. However, VSMCs can contribute to cap thinning by secreting metalloproteinases (MMPs) which degrade the extracellular matrix (ECM) creating a plaque prone to rupture. Methods Our lab will test blackberry extract. Blackberries contain health-promoting phytochemicals called polyphenols and other polyphenol extracts have been shown to inhibit MMPs. Specifically, blackberry extract will be added to nicotine treated cells and to animal model diets. Results In VSMCs, we found that nicotine significantly increased the expression of several MMPs, while decreasing the expression of multiple tissue inhibitors of metalloproteinases (TIMPs). MMP activity measured by zymography was also upregulated by nicotine suggesting that nicotine modulates extracellular matrix (ECM) remodeling by increasing MMP expression and activity. Consistent with ECM remodeling, nicotine promoted cell migration, which was associated with increased reactive oxygen species (ROS) levels. Conclusions These data suggest nicotine promotes VSMC migration into the intima and contributes to plaque instability by fibrous cap weakening. However, future studies are needed to demonstrate nicotine changes plaque composition in vivo. To negate detrimental effects, our lab will test blackberry extract. Blackberries contain health-promoting phytochemicals called polyphenols and other polyphenol extracts have been shown to inhibit MMPs. Specifically, blackberry extract will be added to nicotine treated cells and to animal model diets. Funding Sources Florida Department of Health.

2017 ◽  
Vol 28 (14) ◽  
pp. 1959-1974 ◽  
Author(s):  
Leanna M. Owen ◽  
Arjun S. Adhikari ◽  
Mohak Patel ◽  
Peter Grimmer ◽  
Natascha Leijnse ◽  
...  

The ability of cells to impart forces and deformations on their surroundings underlies cell migration and extracellular matrix (ECM) remodeling and is thus an essential aspect of complex, metazoan life. Previous work has resulted in a refined understanding, commonly termed the molecular clutch model, of how cells adhering to flat surfaces such as a microscope coverslip transmit cytoskeletally generated forces to their surroundings. Comparatively less is known about how cells adhere to and exert forces in soft, three-dimensional (3D), and structurally heterogeneous ECM environments such as occur in vivo. We used time-lapse 3D imaging and quantitative image analysis to determine how the actin cytoskeleton is mechanically coupled to the surrounding matrix for primary dermal fibroblasts embedded in a 3D fibrin matrix. Under these circumstances, the cytoskeletal architecture is dominated by contractile actin bundles attached at their ends to large, stable, integrin-based adhesions. Time-lapse imaging reveals that α-actinin-1 puncta within actomyosin bundles move more quickly than the paxillin-rich adhesion plaques, which in turn move more quickly than the local matrix, an observation reminiscent of the molecular clutch model. However, closer examination did not reveal a continuous rearward flow of the actin cytoskeleton over slower moving adhesions. Instead, we found that a subset of stress fibers continuously elongated at their attachment points to integrin adhesions, providing stable, yet structurally dynamic coupling to the ECM. Analytical modeling and numerical simulation provide a plausible physical explanation for this result and support a picture in which cells respond to the effective stiffness of local matrix attachment points. The resulting dynamic equilibrium can explain how cells maintain stable, contractile connections to discrete points within ECM during cell migration, and provides a plausible means by which fibroblasts contract provisional matrices during wound healing.


Development ◽  
1994 ◽  
Vol 120 (2) ◽  
pp. 425-432 ◽  
Author(s):  
X. Zhang ◽  
M.P. Sarras

Interstitial cell (I-cell) migration in hydra is essential for establishment of the regional cell differentiation pattern in the organism. All previous in vivo studies have indicated that cell migration in hydra is a result of cell-cell interactions and chemotaxic gradients. Recently, in vitro cell adhesion studies indicated that isolated nematocytes could bind to substrata coated with isolated hydra mesoglea, fibronectin and type IV collagen. Under these conditions, nematocytes could be observed to migrate on some of these extracellular matrix components. By modifying previously described hydra grafting techniques, two procedures were developed to test specifically the role of extracellular matrix components during in vivo I-cell migration in hydra. In one approach, the extracellular matrix structure of the apical half of the hydra graft was perturbed using beta-aminopropionitrile and beta-xyloside. In the second approach, grafts were treated with fibronectin, RGDS synthetic peptide and antibody to fibronectin after grafting was performed. In both cases, I-cell migration from the basal half to the apical half of the grafts was quantitatively analyzed. Statistical analysis indicated that beta-aminopropionitrile, fibronectin, RGDS synthetic peptide and antibody to fibronectin all were inhibitory to I-cell migration as compared to their respective controls. beta-xyloside treatment had no effect on interstitial cell migration. These results indicate the potential importance of cell-extracellular matrix interactions during in vivo I-cell migration in hydra.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4680-4680 ◽  
Author(s):  
Alba Matas-Céspedes ◽  
Anna Vidal-Crespo ◽  
Vanina Rodriguez ◽  
Julio Delgado ◽  
Neus Villamor ◽  
...  

Abstract Daratumumab (DARA) is a anti-human CD38 antibody with Fc-mediated cell killing activity. DARA induces killing of tumor cells, mainly via complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC) (de Weers M. J Immunol 2011), and antibody-dependent cellular phagocytosis (ADCP) by macrophages (mΦ), both murine and human in multiple myeloma (MM) and Burkitt lymphoma cells. DARA is currently being evaluated in phase III clinical trials in patients with MM. We have previously reported that DARA induces cytotoxic activity in vitro via ADCC in primary cells and cell lines from Chronic Lymphoctic Leukemia (CLL), and significantly prolongs overall survival of animals in a systemic CLL mouse model. Here, we present additional data on in vivo mechanism of DARA and its effect on tumor-microenvironment interactions in CLL. We first evaluated whether ADCP contributes to DARA activity both in vitro and in vivo. For in vitro ADCP, mΦ were generated from monocytes of normal PBMCs and stimulated with GM-CSF (10ng/mL, 7 days). CLL cell lines and primary cells were labeled with calcein and incubated for 4h with mΦ at an effector:target ratio of 2:1 in the presence of a fixed mAb concentration of 1 μg/mL, followed by flow cytometric analysis. The amount of remaining CLL target cells (CD19+, CD11b-) was reduced by 3-16%. ADCP defined as percentage of mφ which had phagocytosed, referred to as double positive mΦ (CD11b+, calcein+, CD19-), ranged from 3-10%. To analyze ADCP in vivo, SCID beige mice, devoid of NK cells but with active macrophages, were inoculated intraperitoneally with CLL cells (20×106) and simultaneously treated with a single dose of DARA or isotype control (20mg/kg, n=3-5 per group). Forty-eight hours later, CLL cells were recovered from the intraperitoneal cavity and counted in a flow cytometer (identified as human CD45+/CD19+/CD5+cells). In DARA-treated mice the number of CLL cells recovered was reduced by 42% (n=2, p<0.05) compared to the isotype control group. Remarkably, the decrease in cell number was already detectable 2h after DARA administration. CLL pathogenesis relies on supportive tumor-microenvironment interactions both in the bone marrow (BM) and in the lymph node (LN), and CD38 constitutes a molecular hub integrating proliferative and migratory signals for CLL (Malavasi, F. Blood 2011). We evaluated the effect of DARA on migration and adhesion. In in vitro migrations assays, we have demonstrated that DARA (10-30 μg/mL) inhibited CXCL12/SDF1α-mediated migration up to 70% (n=5). In addition, DARA reduced up to 55% (n=2) of downstream pERK activation, that peaked after 5min of CXCL12/SDF1α stimulation. We analyzed the effect of DARA on primary CLL cell migration from Peripheral Blood (PB) to BM and spleen in vivo, using NOD/SCID/gamma (NSG) null mice (lacking NK cells and effective macrophages). In this system, NSG mice were pretreated (day 0) with DARA, control IgG or anti-CXCR4 as positive control for inhibition of cell homing, prior to injection of fresh primary CLL cells (50×106 cells/per mice) on day 1. PB, BM and spleen cells were isolated on day 2 and CLL cells were identified by staining for human CD45/CD19/CD5 and counted using a flow cytometer. Cell counting showed that CLL cells mainly migrate to the spleen, and that DARA significantly reduced this migration (55% inhibition on average, p<0.05). In addition to migration, CD38 also plays a key role in cell adhesion through interaction with integrins (CD49d/CD29) and with extracellular matrix proteins. We analyzed the effect of DARA on the adhesion of CLL cells to the extracellular matrix vascular-cell adhesion molecule-1 (VCAM-1) mediated by CD49d/CD29. DARA reduced adhesion of CLL cells (n=4), to VCAM-1 by 46±13% (range 27-57) compared to isotype control. By RT-PCR we observed an up-regulation of MMP9 transcripts (average 2 fold, n=2), and DARA abrogated both constitutive MMP9 expression (90% reduction) and VCAM-derived (94% reduction) MMP9 expression. In summary, DARA shows a positive effect on ADCP-mediated anti-tumor activity on CLL cells both in vitro and in vivo. In addition DARA exhibits a strong effect on CLL cell migration and adhesion. Based on these data, we hypothesize that DARA may exert unique and substantial effects on CLL tumor cell growth and contributes to potent therapeutic efficacy in a clinical setting. Disclosures Doshi: Janssen R&D: Employment. Parren:Genmab: Employment, Equity Ownership. Lammerts van Bueren:Genmab : Employment. Pérez-Galán:Genmab: Research Funding.


Glycobiology ◽  
2019 ◽  
Vol 30 (6) ◽  
pp. 365-373 ◽  
Author(s):  
Katherine Payne Timms ◽  
Sean Bertram Maurice

Abstract Versican (VCAN) proteolysis and the accumulation of VCAN fragments occur in many developmental and disease processes, affecting extracellular matrix (ECM) structure and cell phenotype. Little is known about the significance of proteolysis and the roles of fragments, or how this ECM remodeling affects the microenvironment and phenotype of diseased cells. G1-DPEAAE fragments promote aspects of epithelial–mesenchymal transitioning in developing and diseased cells, resulting in cell migration. Enhanced proliferation and invasion of tumor and endothelial cells is directly associated with G1 domain deposition and G1-DPEAAE localization respectively. These tumorigenic and angiogenic roles could explain the disease exacerbating effect often associated with G1-containing fragments, however, the pathogenicity of G1 fragments depends entirely upon the context. Overall, VCAN fragments promote tumorigenesis and inflammation; however, the specific cleavage site, the extent of cleavage activity and the microenvironment in which cleavage occurs collectively determine how this pleiotropic molecule and its fragments influence cells.


1999 ◽  
Vol 146 (2) ◽  
pp. 517-529 ◽  
Author(s):  
Claire Legrand ◽  
Christine Gilles ◽  
Jean-Marie Zahm ◽  
Myriam Polette ◽  
Anne-Cécile Buisson ◽  
...  

Cell spreading and migration associated with the expression of the 92-kD gelatinase (matrix metalloproteinase 9 or MMP-9) are important mechanisms involved in the repair of the respiratory epithelium. We investigated the location of MMP-9 and its potential role in migrating human bronchial epithelial cells (HBEC). In vivo and in vitro, MMP-9 accumulated in migrating HBEC located at the leading edge of a wound and MMP-9 expression paralleled cell migration speed. MMP-9 accumulated through an actin-dependent pathway in the advancing lamellipodia of migrating cells and was subsequently found active in the extracellular matrix (ECM). Lamellipodia became anchored through primordial contacts established with type IV collagen. MMP-9 became amassed behind collagen IV where there were fewer cell–ECM contacts. Both collagen IV and MMP-9 were involved in cell migration because when cell–collagen IV interaction was blocked, cells spread slightly but did not migrate; and when MMP-9 activation was prevented, cells remained fixed on primordial contacts and did not advance at all. These observations suggest that MMP-9 controls the migration of repairing HBEC by remodeling the provisional ECM implicated in primordial contacts.


2021 ◽  
Vol 22 (4) ◽  
pp. 2123
Author(s):  
Wan-Jing Chen ◽  
I-Hsuan Lin ◽  
Chien-Wei Lee ◽  
Yi-Fan Chen

Aging causes a decline in skeletal muscle function, resulting in a progressive loss of muscle mass, quality, and strength. A weak regenerative capacity is one of the critical causes of dysfunctional skeletal muscle in elderly individuals. The extracellular matrix (ECM) maintains the tissue framework structure in skeletal muscle. As shown by previous reports and our data, the gene expression of ECM components decreases with age, but the accumulation of collagen substantially increases in skeletal muscle. We examined the structural changes in ECM in aged skeletal muscle and found restricted ECM degradation. In aged skeletal muscles, several genes that maintain ECM structure, such as transforming growth factor β (TGF-β), tissue inhibitors of metalloproteinases (TIMPs), matrix metalloproteinases (MMPs), and cathepsins, were downregulated. Muscle injury can induce muscle repair and regeneration in young and adult skeletal muscles. Surprisingly, muscle injury could not only efficiently induce regeneration in aged skeletal muscle, but it could also activate ECM remodeling and the clearance of ECM deposition. These results will help elucidate the mechanisms of muscle fibrosis with age and develop innovative antifibrotic therapies to decrease excessive collagen deposition in aged muscle.


2021 ◽  
Vol 11 ◽  
Author(s):  
Alexandra Y. Tsidulko ◽  
Oleg B. Shevelev ◽  
Anna S. Khotskina ◽  
Mariia A. Kolpakova ◽  
Anastasia V. Suhovskih ◽  
...  

Adjuvant chemotherapy with temozolomide (TMZ) is an intrinsic part of glioblastoma multiforme (GBM) therapy targeted to eliminate residual GBM cells. Despite the intensive treatment, a GBM relapse develops in the majority of cases resulting in poor outcome of the disease. Here, we investigated off-target negative effects of the systemic chemotherapy on glycosylated components of the brain extracellular matrix (ECM) and their functional significance. Using an elaborated GBM relapse animal model, we demonstrated that healthy brain tissue resists GBM cell proliferation and invasion, thereby restricting tumor development. TMZ-induced [especially in combination with dexamethasone (DXM)] changes in composition and content of brain ECM proteoglycans (PGs) resulted in the accelerated adhesion, proliferation, and invasion of GBM cells into brain organotypic slices ex vivo and more active growth and invasion of experimental xenograft GBM tumors in SCID mouse brain in vivo. These changes occurred both at core proteins and polysaccharide chain levels, and degradation of chondroitin sulfate (CS) was identified as a key event responsible for the observed functional effects. Collectively, our findings demonstrate that chemotherapy-induced changes in glycosylated components of brain ECM can impact the fate of residual GBM cells and GBM relapse development. ECM-targeted supportive therapy might be a useful strategy to mitigate the negative off-target effects of the adjuvant GBM treatment and increase the relapse-free survival of GBM patients.


Author(s):  
Aleksandra N. Kozyrina ◽  
Teodora Piskova ◽  
Jacopo Di Russo

Understanding the complexity of the extracellular matrix (ECM) and its variability is a necessary step on the way to engineering functional (bio)materials that serve their respective purposes while relying on cell adhesion. Upon adhesion, cells receive messages which contain both biochemical and mechanical information. The main focus of mechanobiology lies in investigating the role of this mechanical coordination in regulating cellular behavior. In recent years, this focus has been additionally shifted toward cell collectives and the understanding of their behavior as a whole mechanical continuum. Collective cell phenomena very much apply to epithelia which are either simple cell-sheets or more complex three-dimensional structures. Researchers have been mostly using the organization of monolayers to observe their collective behavior in well-defined experimental setups in vitro. Nevertheless, recent studies have also reported the impact of ECM remodeling on epithelial morphogenesis in vivo. These new concepts, combined with the knowledge of ECM biochemical complexity are of key importance for engineering new interactive materials to support both epithelial remodeling and homeostasis. In this review, we summarize the structure and heterogeneity of the ECM before discussing its impact on the epithelial mechanobiology.


Sign in / Sign up

Export Citation Format

Share Document