scholarly journals Iron Chlorophyllin Bio-efficacy and Metabolites Following Simulated Digestion and Incubation with Caco-2 Cells

2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1860-1860
Author(s):  
Siqiong Zhong ◽  
Amanda Bird ◽  
Rachel Kopec

Abstract Objectives Developing countries rely on poorly bioavailable plant-based sources of iron (i.e., FeSO4), leading to iron deficiency anemia. Heme iron is more bioavailable, but predominantly found in red meat. Iron chlorophyllin (IC) utilizes the porphyrin ring of plant-based chlorophyll to bind iron. IC has previously been shown to survive digestion, and to deliver iron to Caco-2 cells (measured as increased ferritin levels). However, the dose-response of IC treatment has not been assessed. We hypothesized that increasing IC concentrations would increase Caco-2 cell iron in a dose dependent manner. We also hypothesized that novel IC metabolites would be observed following in vitro digestion and incubation with Caco-2 cells. Methods In vitro digestion was performed using FeSO4 and hemoglobin as positive controls, deionized water as a negative control, and IC as the treatment (n = 3). Two doses (low and high) of both FeSO4 and hemoglobin were tested, in addition to four doses of IC (i.e., 2, 8, 34, and 81 ppm iron). Gastric and intestinal phases of digestion were mimicked, and digested chyme was centrifuged and filtered before incubation with differentiated Caco-2 human intestinal cells for 4 h. Cell were harvested, and iron concentrations in the chyme, micelles and harvested cells were tested using furnace atomic absorption spectrometry at 248.3 nm, and concentrations compared using one-way ANOVA, followed by Tukey's post-hoc test (P < 0.05). Metabolites of IC following digestion and cell incubation were tested using UHPLC-DAD-HRMS. Results A fraction (6–15%) of the IC was micellarized, with 19%-28% of heme iron micellarized. Cellular iron concentrations increased through the 8 ppm IC dose, but higher doses did not result in greater concentrations of cellular iron. IC delivered as much iron to the cells as heme, and trended toward increased iron delivery relative to FeSO4 (P = 0.068) when comparing across the low dose concentrations. Following digestion, Fe-chlorin e4 and e6 were totally converted to IC derivatives. Dehydrogenated and demethylated IC metabolites were also detected in the cell. Conclusions Results suggest that IC may better deliver iron to Caco-2 cells as compared to FeSO4, and should be further explored for iron supplementation. Funding Sources This project was partially supported by USDA-NIFA-AFRI A1363.

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1748
Author(s):  
Guadalupe Lavado ◽  
Nieves Higuero ◽  
Manuel León-Camacho ◽  
Ramón Cava

The effect of nitrate/nitrite (0, 37.5, 75, and 150 mg/kg) in the dry-cured loin formulation on the formation of lipid and protein oxidation products during in vitro digestion was evaluated. Dry-cured loins formulated with nitrate/nitrite resulted in significantly less lipid and protein oxidation than uncured loins before and after simulated digestion. Compared to loins added with 0 mg/kg nitrate/nitrite, dry-cured loins with 37.5, 75, and 150 mg/kg contained a significantly lower content of conjugated dienes, malondialdehyde, carbonyls, and non-heme iron, and higher amounts of nitrosylmioglobin and thiols. During in vitro digestion, the content of conjugated dienes, malondialdehyde, and carbonyls increased, while thiol content decreased, indicating the development of lipid and protein oxidative processes. At the end of the intestinal phase, the 75 mg/kg digests had a significantly higher content of conjugated dienes, while no differences were found among the other digests. During the in vitro intestinal phase (180 and 240 min), nitrate/nitrite curing resulted in significantly lower malondialdehyde concentrations in the 37.5, 75, and 150 mg/kg loin digests than in the uncured loin digests. No significant differences were observed at the end of the intestinal digestion phase between the cured loin digests. Digests of dried loins without nitrate/nitrite addition showed higher carbonyl contents than the nitrate/nitrite cured counterparts. The loss of thiols was significantly higher in loin digests without added nitrate/nitrite than in loin digests with different amounts of curing salts. The addition of 37.5 mg/kg nitrate/nitrite in the cured loin formulation prevents the formation of lipid peroxidation products and carbonyls from protein oxidation and thiol loss during digestion


Author(s):  
Boussoualim Naouel ◽  
Trabsa Hayat ◽  
Krache Imane ◽  
Ouhida Soraya ◽  
Arrar Lekhmissi ◽  
...  

Background: Anchusa azurea Mill. (AA) is a medicinal plant largely used traditionally in folk medicine in Algeria, it is locally named: hamham. It is effective in the treatment of various diseases. Objectives: The aim of the present study is to determine the antioxidant, anti-inflammatory and anti-hemolytic effects of phenolic fractions from Anchusa azurea Mill. Methods: In this study, various extracts from Anchusa azurea Mill. (AA) using solvents with increasing polarity were prepared. The quantification of polyphenols and flavonoids was determined. The anti-radical activity of the different extracts was evaluated using DPPH and by measuring the inhibition of the oxidative degradation of β-carotene. The In vitro antihemolytic effect of the plant extracts is determined (CrE, ChE, AcE and AqE). For each extract, four concentrations were tested: 10.59, 21.18, 42.37, 84.74 µg/ml. Vitamin C is used as a standard. Free-radical attack was measured by measuring the HT50 (Half-Hemolysis Time). The anti-inflammatory effect using PMA on mice of the methanolic extract (CrE) was evaluated. Results: The quantification of polyphenols and flavonoids showed that ethyl acetate extract (AcE) contains a higher amount of polyphenols. However, chloroform extract (ChE) presents a higher amount of flavonoids. AcE showed an important scavenging activity using the DPPH radical (IC50= 68.35 µg/ml). The results showed that AcE also exhibited very great inhibition on the oxidation of β-carotene/linoleic acid (84.33%). All extracts increased the HT50 values (Half-Hemolysis Time) in a dose-dependent manner. The three highest concentrations (21.18, 42.37 and 84.74 µg / ml) of ChE caused a very significant delay (p ≤ 0.001) of hemolysis compared to the negative control and the positive control "VIT C". The anti-inflammatory effect using PMA on mice showed that the methanolic extract (CrE) of AA reduced the weight of the ear edema. Conclusions: This plant has a strong pharmacological power, which supports its traditional medicinal use.


2021 ◽  
Vol 28 ◽  
Author(s):  
Gabriel Prado ◽  
Isidora Pierattini ◽  
Guiselle Villarroel ◽  
Fernanda Fuentes ◽  
Alejandra Silva ◽  
...  

Background: Worldwide, the prevalence of obesity and related non-communicable chronic diseases is high and continues to grow. In that sense, anthocyanins (ANC) have shown beneficial health effects in preventing obesity and metabolic risk factors. Moreover, the demand for functional foods incorporating these compounds has risen significantly in the past years. Thus, there is a need for validations of the functional properties of these formulations; nevertheless, in vivo assays are complex and require a lot of resources. One approach for estimating bioactive compounds' functionality and health benefits is to evaluate their bioaccessibility on a specific food matrix, determined by various factors. This article aims to review different factors influencing the bioaccessibility of ANC evaluated on in vitro digestion models as a functionality parameter, elucidating the effect of chemical composition, raw materials, food matrices, and vehicles for the delivery of ANC. Methods: Study searches were performed using PubMed, Web of Science, Scopus, and Science Direct databases. Results: Different factors influenced bioaccessibility and stability of ANC studied by in vitro digestion which are: i) the raw material used for ANC obtention; ii) food processing; iii) other food components; iv) the extraction method and solvents used; v) the structure of ANC; vi) delivery system (e.g., microencapsulation); vii) pH of the medium; viii) the digestion stage. Conclusion: Simulated digestion systems allow to determine free or encapsulated ANC bioaccessibility in different food matrices, which offers advantages in determining the potential functionality of a food product.


2005 ◽  
Vol 75 (6) ◽  
pp. 436-445 ◽  
Author(s):  
Sean Lynch

Three factors determine how much iron will be absorbed from a meal. They are the physiological mechanisms that regulate uptake by and transfer through the enterocytes in the upper small intestine, the quantity of iron in the meal, and its availability to the cellular iron transporters. Established methods exist for predicting the effect of physiological regulation and for measuring or estimating meal iron content. Three approaches to estimating bioavailability have been advocated. Two are in vitro screening procedures: measurement of dialyzable iron and Caco-2 cell uptake, both carried out after in vitro simulated gastric and pancreatic digestion. The third is the use of algorithms based on the predicted effects of specific meal components on absorption derived from isotopic studies in human volunteers. The in vitro procedures have been very useful for identifying and characterizing factors that affect non-heme iron absorption, but direct comparisons between absorption predicted from the in vitro tests and measurements in human volunteers have only been made in a limited number of published studies. The available data indicate that dialysis and Caco-2 cell uptake are useful for ranking meals and single food items in terms of predicted iron bioavailability, but may not reflect the magnitudes of the effects of factors that influence absorption accurately. Algorithms based on estimates of the amounts of heme iron and of enhancers and inhibitors of non-heme iron absorption in foods make it possible to classify meals or diets as being of high, medium, or low bioavailability. The precision with which meal iron bioavailability can be predicted in a population, for which a specific algorithm has been developed, is improved by measuring the content of the most important enhancers and inhibitors. However, the accuracy of such predictions appears to be much lower when the algorithm is applied to meals eaten by different populations.


Antioxidants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 554
Author(s):  
Anna Jakubczyk ◽  
Urszula Złotek ◽  
Urszula Szymanowska ◽  
Kamila Rybczyńska-Tkaczyk ◽  
Krystyna Jęderka ◽  
...  

Lovage seedlings were elicited with jasmonic acid (JA) and yeast extract (YE) to induce the synthesis of biologically active compounds. A simulated digestion process was carried out to determine the potential bioavailability of phenolic acids. Buffer extracts were prepared for comparison. The ability to neutralize ABTS radicals was higher in all samples after the in vitro digestion, compared to that in the buffer extracts. However, the elicitation resulted in a significant increase only in the value of the reduction power of the potentially bioavailable fraction of phenolic acids. The effect of the elicitation on the activity of the potentially bioavailable fraction of phenolic acids towards the enzymes involved in the pathogenesis of the metabolic syndrome, i.e., ACE, lipase, amylase, and glucosidase, was analyzed as well. The in vitro digestion caused a significant increase in the ability to inhibit the activity of these enzymes; moreover, the inhibitory activity against alpha-amylase was revealed only after the digestion process. The potential anti-inflammatory effect of the analyzed extracts was defined as the ability to inhibit key pro-inflammatory enzymes, i.e., lipoxygenase and cyclooxygenase 2. The buffer extracts from the YE-elicited lovage inhibited the LOX and COX-2 activity more effectively than the extracts from the control plants. A significant increase in the anti-inflammatory and antimicrobial properties was noted after the simulated digestion.


2002 ◽  
Vol 18 (6) ◽  
pp. 310-315 ◽  
Author(s):  
Darlene A Calhoun ◽  
Brooke E Richards ◽  
Jason A Gersting ◽  
Sandra E Sullivan ◽  
Robert D Christensen

Objective: To determine the stability of granulocyte colony-stimulating factor (G-CSF) and erythropoietin (Epo) in human amniotic fluid and recombinant G-CSF (Neupogen) and Epo (Epogen) in simulated amniotic fluid to digestions at pH concentrations of 3.2, 4.5, and 5.8 to assess their bioavailability to the neonate. Design: A simulated amniotic fluid containing Neupogen and Epogen was subjected to in vitro conditions that mimicked preprandial and postprandial neonatal intestinal digestion. Human amniotic fluid was tested using identical digestion conditions as well as human amniotic fluid to which Epogen and Neupogen had been added. Main Outcome Measures: The percentages of G-CSF/Epo and Neupogen/Epogen remaining after 1 and 2 hours of simulated digestions were compared with those at time zero, and concentrations at 2 hours were compared with those at 1 hour and time zero. Results: In simulated amniotic fluid at pH 3.2, significant degradation of G-CSF was observed at 1 hour (p = 0.03). No differences were observed at 1 or 2 hours for either pH 4.5 (p = 0.30 and 0.11, respectively) or pH 5.8 (p = 0.20 and 0.49, respectively). Human amniotic fluid exhibited significant degradation pH 3.2 (p = 0.04) and pH 4.5 (p < 0.05) at 1 hour; no difference was noted at pH 5.8 at 1 hour (p = 0.34). When additional Neupogen was added to human amniotic fluid, significant degradation was observed at pH 3.2 (p < 0.05) and pH 4.5 (p = 0.03) at 1 hour; no difference was noted at 1 hour at pH 5.8 (p = 0.11). In simulated amniotic fluid at pH 3.2, significant degradation of Epo occurred at 1 hour (p < 0.05). There were no differences at 1 hour for pH 4.5 (p = 0.50) or pH 5.8 (p = 0.17). Human amniotic fluid exhibited significant degradation at pH 3.2 (p < 0.05) and pH 4.5 (p < 0.05) at 1 hour; no difference was noted at 1 hour at pH 5.8 (p = 0.34). When additional Epogen was added to human amniotic fluid, significant degradation was observed at pH 3.2 (p = 0.001) and pH 4.5 (p = 0.003); no difference was noted at 1 hour at pH 5.8 (p = 0.31). Conclusions: G-CSF/Epo in human amniotic fluid and Neupogen/Epogen in simulated amniotic fluid are preserved to varying degrees during simulated digestion conditions. The degree of degradation of both cytokines was time- and pH-dependent. Measurable quantities of G-CSF and Epo are biologically available when swallowed by the fetus or a preterm neonate.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Micha Mahardika ◽  
Fauzan Amin ◽  
Arda Ganda Risdiyono

Iron deficiency anemia is a type of anemia caused by iron deficiency, decreasing in the number of healthy red blood cells. The purpose of this study was to make fortified Fe-EDTA and find out the changes in iron availability after cooking (frying and boiling). The biological availability test for iron was carried out in vitro by simulating human digestion using enzyme pepsin and pancreatin-bile solution. The iron variants added were 0, 0.033, 0.066, 0.099, 0.132, and 0.166 % of EDTA iron on 30 grams of raw soybeans to be homemade tempeh. Test results with Atomic Absorption Spectrometry (AAS) showed that the highest Fe content of 12.54 mg was obtained by adding 0.166% of EDTA iron to raw tempeh. But after cooking, there is a decrease in fried and boiled tempeh. The results obtained from the addition of 0.166% of iron-EDTA are 7.74 mg for fried tempeh, and 8.40 mg for boiled tempeh. The results of the addition of Fe-EDTA 0.166% for raw tempeh and boiled match to the value of daily Fe intake to reduce iron anemia in the amount of 8-15 mg / day according to Recommendation Dietary Allowance (RDA). The addition of 0.166% of Fe-EDTA fortification on dried tempeh, it still has not match to the recommended level.Received: 13 September 2019; Accepted: 30 December 2019; Published: 12 January 2020


1989 ◽  
Vol 69 (3) ◽  
pp. 727-734 ◽  
Author(s):  
P. S. MIR ◽  
J. H. BURTON ◽  
B. N. WILKIE ◽  
F. R. VAN DE VOORT

The effect of processing commercial soybean meal (HSBM) by either extrusion (ExSBM) or fermentation with microbes in rumen fluid (FSBM) on rate of protein hydrolysis and the activity of the antigen β-conglycinin was evaluated. Ethanol-extracted soybean meal (EtSBM) and skim milk powder (SMP) were included as positive controls while HSBM was the negative control, with regard to antigen content. The rates of proteolysis were determined by acid pepsin hydrolysis and the activity of β-conglycinin in the soluble fraction of the digestion mixtures at 0, 2, 4, 6 and 8 h of in vitro proteolysis was determined by radial immunodiffusion in agar gel containing antibody specific for the antigen. Susceptibility of FSBM and ExSBM to proteolysis by pepsin was greater than that of EtSBM. β-Conglycinin content was greatest in HSBM (1.0 ± 0.2 g dL−1) and only 0.3 ± 0.03 g dL−1 in ExSBM at the beginning of in vitro digestion. The antigen was not detected in either FSBM or EtSBM, therefore these products could be used in milk replacers for calves. Key words: In vitro pepsin proteolysis, extruded soybean meal, fermented soybean meal, antigen, β-conglycinin


Endocrinology ◽  
2015 ◽  
Vol 156 (11) ◽  
pp. 4365-4373 ◽  
Author(s):  
Christiane Otto ◽  
Anna Särnefält ◽  
Anne Ljungars ◽  
Siegmund Wolf ◽  
Beate Rohde-Schulz ◽  
...  

The prolactin receptor (PRLR) has been implicated in a variety of physiological processes (lactation, reproduction) and diseases (breast cancer, autoimmune diseases). Prolactin synthesis in the pituitary and extrapituitary sites is regulated by different promoters. Dopamine receptor agonists such as bromocriptine can only interfere with pituitary prolactin synthesis and thus do not induce a complete blockade of PRLR signaling. Here we describe the identification of a human monoclonal antibody 005-C04 that blocks PRLR-mediated signaling at nanomolar concentrations in vitro. In contrast to a negative control antibody, the neutralizing PRLR antibody 005-C04 inhibits signal transducer and activator of transcription 5 phosphorylation in T47D cells and proliferation of BaF3 cells stably expressing murine or human PRLRs in a dose-dependent manner. In vivo application of this new function-blocking PRLR antibody reflects the phenotype of PRLR-deficient mice. After antibody administration female mice become infertile in a reversible manner. In lactating dams, the antibody induces mammary gland involution and negatively interferes with lactation capacity as evidenced by reduced milk protein expression in mammary glands and impaired litter weight gain. Antibody-mediated blockade of the PRLR in vivo stimulates hair regrowth in female mice. Compared with peptide-derived PRLR antagonists, the PRLR antibody 005-C04 exhibits several advantages such as higher potency, noncompetitive inhibition of PRLR signaling, and a longer half-life, which allows its use as a tool compound also in long-term in vivo studies. Therefore, we suggest that this antibody will help to further our understanding of the role of auto- and paracrine PRLR signaling in health and disease.


Sign in / Sign up

Export Citation Format

Share Document