Bioaccessibility of Anthocyanins on in vitro Digestion Mmodels: Factors Implicated and Role in Functional Foods Development

2021 ◽  
Vol 28 ◽  
Author(s):  
Gabriel Prado ◽  
Isidora Pierattini ◽  
Guiselle Villarroel ◽  
Fernanda Fuentes ◽  
Alejandra Silva ◽  
...  

Background: Worldwide, the prevalence of obesity and related non-communicable chronic diseases is high and continues to grow. In that sense, anthocyanins (ANC) have shown beneficial health effects in preventing obesity and metabolic risk factors. Moreover, the demand for functional foods incorporating these compounds has risen significantly in the past years. Thus, there is a need for validations of the functional properties of these formulations; nevertheless, in vivo assays are complex and require a lot of resources. One approach for estimating bioactive compounds' functionality and health benefits is to evaluate their bioaccessibility on a specific food matrix, determined by various factors. This article aims to review different factors influencing the bioaccessibility of ANC evaluated on in vitro digestion models as a functionality parameter, elucidating the effect of chemical composition, raw materials, food matrices, and vehicles for the delivery of ANC. Methods: Study searches were performed using PubMed, Web of Science, Scopus, and Science Direct databases. Results: Different factors influenced bioaccessibility and stability of ANC studied by in vitro digestion which are: i) the raw material used for ANC obtention; ii) food processing; iii) other food components; iv) the extraction method and solvents used; v) the structure of ANC; vi) delivery system (e.g., microencapsulation); vii) pH of the medium; viii) the digestion stage. Conclusion: Simulated digestion systems allow to determine free or encapsulated ANC bioaccessibility in different food matrices, which offers advantages in determining the potential functionality of a food product.

2016 ◽  
Vol 78 (5-6) ◽  
Author(s):  
Ivan Smirnov ◽  
Victor Keino ◽  
Ksenia Goryacheva ◽  
Alexander Shunk ◽  
Alexander Bondarev ◽  
...  

The article presents the results of the research hemostimulating activity of aqueous extracts of antler young Siberean stag and drone larvae homogenate. These substrates were obtained from raw materials of animal origin. Altai Krai andAltaiRepublicare subjects of theRussian Federationwhich is the place of production of the raw material. Experiments were conducted in two stages. The first stage - in vitro, which included a research of experimental substrates on the culture of mouse marrow cells. During the experiments were obtained different results. We counted the number of colonies grown in cell culture for this. The second stage of experimenters - in vivo. It included an assessment of the myeloprotector on model of cytostatic myelosuppression of mice and analysis of bone marrow and peripheral blood.


Marine Drugs ◽  
2021 ◽  
Vol 19 (9) ◽  
pp. 480
Author(s):  
Girija Gajanan Phadke ◽  
Nikheel Bhojraj Rathod ◽  
Fatih Ozogul ◽  
Krishnamoorthy Elavarasan ◽  
Muthusamy Karthikeyan ◽  
...  

Developing peptide-based drugs are very promising to address many of the lifestyle mediated diseases which are prevalent in a major portion of the global population. As an alternative to synthetic peptide-based drugs, derived peptides from natural sources have gained a greater attention in the last two decades. Aquatic organisms including plants, fish and shellfish are known as a rich reservoir of parent protein molecules which can offer novel sequences of amino acids in peptides, having unique bio-functional properties upon hydrolyzing with proteases from different sources. However, rather than exploiting fish and shellfish stocks which are already under pressure due to overexploitation, the processing discards, regarded as secondary raw material, could be a potential choice for peptide based therapeutic development strategies. In this connection, we have attempted to review the scientific reports in this area of research that deal with some of the well-established bioactive properties, such as antihypertensive, anti-oxidative, anti-coagulative, antibacterial and anticarcinogenic properties, with reference to the type of enzymes, substrate used, degree of particular bio-functionality, mechanism, and wherever possible, the active amino acid sequences in peptides. Many of the studies have been conducted on hydrolysate (crude mixture of peptides) enriched with low molecular bioactive peptides. In vitro and in vivo experiments on the potency of bioactive peptides to modulate the human physiological functions beneficially have demonstrated that these peptides can be used in the prevention and treatment of non-communicable lifestyle mediated diseases. The information synthesized under this review could serve as a point of reference to drive further research on and development of functionally active therapeutic natural peptides. Availability of such scientific information is expected to open up new zones of investigation for adding value to underutilized secondary raw materials, which in turn paves the way for sustainability in fish processing. However, there are significant challenges ahead in exploring the fish waste as a source of bioactive peptides, as it demands more studies on mechanisms and structure–function relationship understanding as well as clearance from regulatory and statutory bodies before reaching the end user in the form of supplement or therapeutics.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 306 ◽  
Author(s):  
Gabriele Rocchetti ◽  
Gianluca Giuberti ◽  
Franco Lucchini ◽  
Luigi Lucini

Artichoke is a relevant source of health-promoting compounds such as polyphenols and sesquiterpene lactones. In this study, the bioaccessibility and gut bioavailability of artichoke constituents were evaluated by combining in vitro digestion and large intestine fermentation, metabolomics, and Caco-2 human intestinal cells model. Moreover, the ability of artichoke polyphenols to modulate the in vitro starch digestibility was also explored. An untargeted metabolomic approach based on liquid chromatography quadrupole-time-of-flight (UHPLC/QTOF) mass spectrometry coupled with multivariate statistics was used to comprehensively screen the phytochemical composition of raw, digested, and fermented artichoke. Overall, a large abundance of phenolic acids and sesquiterpene lactones was detected, being 13.77 and 11.99 mg·g−1, respectively. After 20 h of in vitro large intestine fermentation, a decrease in polyphenols and sesquiterpene lactones content was observed. The most abundant compounds characterizing the raw material (i.e., chlorogenic acid and cynaropicrin equivalents) showed an average % bioaccessibility of 1.6%. The highest % bioaccessibility values were recorded for flavonoids such as anthocyanin and flavone equivalents (on average, 13.6%). However, the relatively high bioavailability values recorded for flavonols, phenolic acids, and sesquiterpene lactones (from 71.6% up to 82.4%) demonstrated that these compounds are able to be transported through the Caco-2 monolayer. The phenolic compounds having the highest permeation rates through the Caco-2 model included low molecular weight phenolics such as tyrosol and 4-ethylcatechol; the isoflavonoids 3′-O-methylviolanone, equol 4′-O-glucuronide, and hydroxyisoflavone; together with the methyl and acetyl derivatives of glycosylated anthocyanins. Therefore, although human in vivo confirmatory trials are deemed possible, current findings provide insights into the mechanistic effects underlying artichoke polyphenols and sesquiterpenoids bioavailability following gastrointestinal and large intestine processes.


Author(s):  
S.A. Solovieva ◽  

In the article is established the role of functional foods in the healthy nutrition of the population, is discussed the prospects for the use of fish raw materials in the manufacture of functional foods, and the necessity of developing a recipe for a fish riet is substantiated.


2020 ◽  
Vol 176 ◽  
pp. 03019
Author(s):  
Marina Shkolnikova ◽  
Olga Chugunova ◽  
Svetlana Ivanova

Many recent researches in vitro and in vivo proved the large therapeutic potency of non-toxic anthocyans in anti-inflammatory, anti-infective, anti-oxidative actions. Anthocyanin is a natural phenolic colorant approved in many countries. A reason why the world market of natural food colorants is reduced is because fruit and berry raw materials are expensive. Yet the fruit and berry raw materials are extracted with significant losses and by-products. This constitutes around 23-45% of the whole amount of berries processes in the Russian Federation. Thus, a priority direction of the food industry is a development of technologies allowing to use precious berry pomace with high bioactive compounds, i.e. anthocyans, organic acids, pectin. The aim of the research is to extract food colorant from the pomace of Vaccínium myrtíllus and Vaccínium vítis-idaéa to identify individual anthocyanin pigments. The food safety and composition of the pomace of Vaccinium myrtillus and Vaccinium vitis-idaea as raw material for food colorant extraction were found. Individual anthocyanin pigments of anthocyanin extracts were identified through the method of high-performance liquid chromatography. Cyanidin-3-galactoside was found in the extracts of berries (85,6 %) and pomaces (81,2%) of Vaccinium vitis-idaea. Fifteen compounds were identified in the extracts of Vaccinium myrtillus. The major ones were delphinidin-3-glucoside (13,4 %), delphinidin-3-galactoside (12,4 %), and cyanidin-3-glucoside for the fresh berries. As for the pigments of its pomaces, they were delphinidin-3-glucoside (15,3 %), delphinidin-3-galactoside (14,7 %), and delphinidin-3-arabinoside (10,5 %). Hence, there are more anthocyanin pigments in the extracts of pomaces, than in those of the fresh berries with identical compounds – 24,7 % more for Vaccinium myrtillus and 11,1 % more for Vaccinium myrtillus. The possibility to extract anthocyanin pigments from by-products of the local fruit and berry raw materials – i.e. of Vaccinium myrtillus and Vaccinium vitis-idae ones – and identify them is discussed.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 410 ◽  
Author(s):  
Kristine Bach Korsholm Knudsen ◽  
Christine Heerup ◽  
Tine Røngaard Stange Jensen ◽  
Xiaolu Geng ◽  
Nikolaj Drachmann ◽  
...  

Efficient lipid digestion in formula-fed infants is required to ensure the availability of fatty acids for normal organ development. Previous studies suggest that the efficiency of lipid digestion may depend on whether lipids are emulsified with soy lecithin or fractions derived from bovine milk. This study, therefore, aimed to determine whether emulsification with bovine milk-derived emulsifiers or soy lecithin (SL) influenced lipid digestion in vitro and in vivo. Lipid digestibility was determined in vitro in oil-in-water emulsions using four different milk-derived emulsifiers or SL, and the ultrastructural appearance of the emulsions was assessed using electron microscopy. Subsequently, selected emulsions were added to a base diet and fed to preterm neonatal piglets. Initially, preterm pigs equipped with an ileostomy were fed experimental formulas for seven days and stoma output was collected quantitatively. Next, lipid absorption kinetics was studied in preterm pigs given pure emulsions. Finally, complete formulas with different emulsions were fed for four days, and the post-bolus plasma triglyceride level was determined. Milk-derived emulsifiers (containing protein and phospholipids from milk fat globule membranes and extracellular vesicles) showed increased effects on fat digestion compared to SL in an in vitro digestion model. Further, milk-derived emulsifiers significantly increased the digestion of triglyceride in the preterm piglet model compared with SL. Ultra-structural images indicated a more regular and smooth surface of fat droplets emulsified with milk-derived emulsifiers relative to SL. We conclude that, relative to SL, milk-derived emulsifiers lead to a different surface ultrastructure on the lipid droplets, and increase lipid digestion.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 560
Author(s):  
Wei Zhou ◽  
Ce Cheng ◽  
Li Ma ◽  
Liqiang Zou ◽  
Wei Liu ◽  
...  

There is growing interest in developing biomaterial-coated liposome delivery systems to improve the stability and bioavailability of curcumin, which is a hydrophobic nutraceutical claimed to have several health benefits. The curcumin-loaded rhamnolipid liposomes (Cur-RL-Lips) were fabricated from rhamnolipid and phospholipids, and then chitosan (CS) covered the surface of Cur-RL-Lips by electrostatic interaction to form CS-coated Cur-RL-Lips. The influence of CS concentration on the physical stability and digestion of the liposomes was investigated. The CS-coated Cur-RL-Lips with RL:CS = 1:1 have a relatively small size (412.9 nm) and positive charge (19.7 mV). The CS-coated Cur-RL-Lips remained stable from pH 2 to 5 at room temperature and can effectively slow the degradation of curcumin at 80 °C; however, they were highly unstable to salt addition. In addition, compared with Cur-RL-Lips, the bioavailability of curcumin in CS-coated Cur-RL-Lips was relatively high due to its high transformation in gastrointestinal tract. These results may facilitate the design of a more efficacious liposomal delivery system that enhances the stability and bioavailability of curcumin in nutraceutical-loaded functional foods and beverages.


2012 ◽  
pp. 179-188 ◽  
Author(s):  
Nàdia Ortega Olivé ◽  
Maria-José Motilva Casado
Keyword(s):  

Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2507
Author(s):  
Simonetta Fois ◽  
Piero Pasqualino Piu ◽  
Manuela Sanna ◽  
Tonina Roggio ◽  
Pasquale Catzeddu

The use of wholemeal flour and sourdough fermentation in different food matrices has received considerable attention in recent years due to its resulting health benefits. In this study, a semolina-based and a wholemeal semolina-based sourdough were prepared and added to the formulation of gnocchetti-type fresh pasta. Four types of gnocchetti were made, using semolina plus semolina-based sourdough (SS), semolina plus wholemeal semolina-based sourdough (SWS), semolina alone (S), and semolina plus wholemeal semolina (WS). The latter two were used as controls. The digestibility of starch was studied both in vitro and in vivo, and the glycemic response (GR) and glycemic load (GL) were determined. Starch digestibility, both in vivo and in vitro, was higher in wholemeal semolina than semolina pasta and the resulting GR values (mg dL−1 min−1) were also higher (2209 and 2277 for WS and SWS; 1584 and 1553 for S and SS, respectively). The use of sourdough significantly reduced the rapidly digestible starch (RDS) content and increased the inaccessible digestible starch (IDS) content. The addition of sourdough to the formulation had no effect on the GR values, but led to a reduction of the GL of the pasta. These are the first data on the GR and GL of fresh pasta made with sourdough.


Sign in / Sign up

Export Citation Format

Share Document