G-CSF and Erythropoietin Stability in Amniotic Fluid during Simulated in vitro Digestion Conditions

2002 ◽  
Vol 18 (6) ◽  
pp. 310-315 ◽  
Author(s):  
Darlene A Calhoun ◽  
Brooke E Richards ◽  
Jason A Gersting ◽  
Sandra E Sullivan ◽  
Robert D Christensen

Objective: To determine the stability of granulocyte colony-stimulating factor (G-CSF) and erythropoietin (Epo) in human amniotic fluid and recombinant G-CSF (Neupogen) and Epo (Epogen) in simulated amniotic fluid to digestions at pH concentrations of 3.2, 4.5, and 5.8 to assess their bioavailability to the neonate. Design: A simulated amniotic fluid containing Neupogen and Epogen was subjected to in vitro conditions that mimicked preprandial and postprandial neonatal intestinal digestion. Human amniotic fluid was tested using identical digestion conditions as well as human amniotic fluid to which Epogen and Neupogen had been added. Main Outcome Measures: The percentages of G-CSF/Epo and Neupogen/Epogen remaining after 1 and 2 hours of simulated digestions were compared with those at time zero, and concentrations at 2 hours were compared with those at 1 hour and time zero. Results: In simulated amniotic fluid at pH 3.2, significant degradation of G-CSF was observed at 1 hour (p = 0.03). No differences were observed at 1 or 2 hours for either pH 4.5 (p = 0.30 and 0.11, respectively) or pH 5.8 (p = 0.20 and 0.49, respectively). Human amniotic fluid exhibited significant degradation pH 3.2 (p = 0.04) and pH 4.5 (p < 0.05) at 1 hour; no difference was noted at pH 5.8 at 1 hour (p = 0.34). When additional Neupogen was added to human amniotic fluid, significant degradation was observed at pH 3.2 (p < 0.05) and pH 4.5 (p = 0.03) at 1 hour; no difference was noted at 1 hour at pH 5.8 (p = 0.11). In simulated amniotic fluid at pH 3.2, significant degradation of Epo occurred at 1 hour (p < 0.05). There were no differences at 1 hour for pH 4.5 (p = 0.50) or pH 5.8 (p = 0.17). Human amniotic fluid exhibited significant degradation at pH 3.2 (p < 0.05) and pH 4.5 (p < 0.05) at 1 hour; no difference was noted at 1 hour at pH 5.8 (p = 0.34). When additional Epogen was added to human amniotic fluid, significant degradation was observed at pH 3.2 (p = 0.001) and pH 4.5 (p = 0.003); no difference was noted at 1 hour at pH 5.8 (p = 0.31). Conclusions: G-CSF/Epo in human amniotic fluid and Neupogen/Epogen in simulated amniotic fluid are preserved to varying degrees during simulated digestion conditions. The degree of degradation of both cytokines was time- and pH-dependent. Measurable quantities of G-CSF and Epo are biologically available when swallowed by the fetus or a preterm neonate.

2017 ◽  
Vol 4 (S) ◽  
pp. 72
Author(s):  
Rohayu Izanwati Mohd Rawi

Therapeutic potential of human amniotic fluid (hAF) cells in treating human disease is very promising. Furthermore it provides an alternative in isolating stem cells from an accessible source, where the fluid is merely discarded, thus circumventing the ethical concerns. Mesenchymal stem cell (MSC) is one of the heterogenous cell populations in the amniotic fluid (AF), however, its role and potential for stem cell therapy are yet to be discovered. One of the criteria in establishing the clinical grade of MSCs is the ability of the cells to retain their genomic stability in vitro prior to bedside applications. The microenviroment niche of the culture medium used is important to generate the safe MSCs. As mitochondria play the vital role in metabolic task such as apoptosis and cell proliferation, therefore investigating mitochondria DNA (mtDNA) is essential to mark the stability of stem cell. In this study, we aimed to detect variations of mtDNA across the passage number of cultured human amniotic fluid MSCs (hAFMSCs), cultured in animal component free (ACF) medium, specialised for human MSCs. Polymorphisms of hypervariable region 1 (HV1) in the D-loop of mtDNA were investigated in a series of cultured hAFMSCs (passage 1 and 3) from three different samples (three biological replicates) as well as in their respective fresh samples (control). Extracted DNA samples were subjected to PCR to detect the sequence variations of HV1 (nt16024-16365). The sequences were then analysed using SeqScape v2.5 by comparing the sequences with The Cambridge Reference Sequence (rCRS) for human mtDNA. The common C-to-T transition at position 16223 (C16223T) for all three samples was identified. Another common base transition was also identified for the other two samples at position 16311 (T16311C). However, one of the samples showed more variants; a C-to-T transition at position 16290 (C16290T), an A-to-G at position 16317 (A16317G) and a G-to-A at position 16319 (G16319A). All variants were identified within the sequence of around 341bp nucleotides and their polymorphisms frequency was consistent for all three samples regardless of their passage numbers when compared to control. This pattern of polymorphisms demonstrates the HV1 mtDNA integrity of hAFMSCs cultured in ACF medium, hence highly suggesting the ability of ACF medium in retaining the stability of stem cells mtDNA in vitro. The ACF medium may serve as a good medium in culturing hAFMSCs that is safe and stable for basic research in stem cell and therapeutic applications.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6292
Author(s):  
Anna Czubaszek ◽  
Anna Czaja ◽  
Anna Sokół-Łętowska ◽  
Joanna Kolniak-Ostek ◽  
Alicja Z. Kucharska

Cereal preparation can be an excellent source of substances with proven health-promoting properties. Unfortunately, some types of bread, such as white flour bread, are devoid of many valuable nutrients. Therefore, it is necessary to look for ways to increase its density and nutritional value. The aim of the study was to investigate the effect of stabilized plant extracts on the quality of bread, its antioxidant activity and polyphenol content, and to evaluate the stability of bioactive compounds and antioxidant activity during in vitro digestion. The research material was the wheat bread baked with spray dried microcapsules of hawthorn bark, soybeans and onion husks in maltodextrin or inulin carriers. The addition of plant extracts resulted in the presence of phenolic compounds in the wheat bread, and its antioxidant activity significantly increased. There was no significant difference in antioxidant activity between breads containing microcapsules with different carriers. During in vitro digestion, procyanidins and isoflavones in bread were more resistant to the digestive processes than other compounds. The antioxidant activity during simulated digestion was the highest at the stage of gastric digestion, and its value depended on the extract used and the analytical method applied.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 560
Author(s):  
Wei Zhou ◽  
Ce Cheng ◽  
Li Ma ◽  
Liqiang Zou ◽  
Wei Liu ◽  
...  

There is growing interest in developing biomaterial-coated liposome delivery systems to improve the stability and bioavailability of curcumin, which is a hydrophobic nutraceutical claimed to have several health benefits. The curcumin-loaded rhamnolipid liposomes (Cur-RL-Lips) were fabricated from rhamnolipid and phospholipids, and then chitosan (CS) covered the surface of Cur-RL-Lips by electrostatic interaction to form CS-coated Cur-RL-Lips. The influence of CS concentration on the physical stability and digestion of the liposomes was investigated. The CS-coated Cur-RL-Lips with RL:CS = 1:1 have a relatively small size (412.9 nm) and positive charge (19.7 mV). The CS-coated Cur-RL-Lips remained stable from pH 2 to 5 at room temperature and can effectively slow the degradation of curcumin at 80 °C; however, they were highly unstable to salt addition. In addition, compared with Cur-RL-Lips, the bioavailability of curcumin in CS-coated Cur-RL-Lips was relatively high due to its high transformation in gastrointestinal tract. These results may facilitate the design of a more efficacious liposomal delivery system that enhances the stability and bioavailability of curcumin in nutraceutical-loaded functional foods and beverages.


2021 ◽  
Vol 17 (3) ◽  
pp. e1009116
Author(s):  
Allison N. Dammann ◽  
Anna B. Chamby ◽  
Andrew J. Catomeris ◽  
Kyle M. Davidson ◽  
Hervé Tettelin ◽  
...  

Streptococcus agalactiae (group B Streptococcus; GBS) remains a dominant cause of serious neonatal infections. One aspect of GBS that renders it particularly virulent during the perinatal period is its ability to invade the chorioamniotic membranes and persist in amniotic fluid, which is nutritionally deplete and rich in fetal immunologic factors such as antimicrobial peptides. We used next-generation sequencing of transposon-genome junctions (Tn-seq) to identify five GBS genes that promote survival in the presence of human amniotic fluid. We confirmed our Tn-seq findings using a novel CRISPR inhibition (CRISPRi) gene expression knockdown system. This analysis showed that one gene, which encodes a GntR-class transcription factor that we named MrvR, conferred a significant fitness benefit to GBS in amniotic fluid. We generated an isogenic targeted deletion of the mrvR gene, which had a growth defect in amniotic fluid relative to the wild type parent strain. The mrvR deletion strain also showed a significant biofilm defect in vitro. Subsequent in vivo studies showed that while the mutant was able to cause persistent murine vaginal colonization, pregnant mice colonized with the mrvR deletion strain did not develop preterm labor despite consistent GBS invasion of the uterus and the fetoplacental units. In contrast, pregnant mice colonized with wild type GBS consistently deliver prematurely. In a sepsis model the mrvR deletion strain showed significantly decreased lethality. In order to better understand the mechanism by which this newly identified transcription factor controls GBS virulence, we performed RNA-seq on wild type and mrvR deletion GBS strains, which revealed that the transcription factor affects expression of a wide range of genes across the GBS chromosome. Nucleotide biosynthesis and salvage pathways were highly represented among the set of differentially expressed genes, suggesting that MrvR may be involved in regulating nucleotide availability.


1999 ◽  
Vol 202 (5) ◽  
pp. 377-382 ◽  
Author(s):  
Clelia Altieri ◽  
Giuseppe Maruotti ◽  
Costanzo Natale ◽  
Salvatore Massa

2021 ◽  
Vol 28 ◽  
Author(s):  
Gabriel Prado ◽  
Isidora Pierattini ◽  
Guiselle Villarroel ◽  
Fernanda Fuentes ◽  
Alejandra Silva ◽  
...  

Background: Worldwide, the prevalence of obesity and related non-communicable chronic diseases is high and continues to grow. In that sense, anthocyanins (ANC) have shown beneficial health effects in preventing obesity and metabolic risk factors. Moreover, the demand for functional foods incorporating these compounds has risen significantly in the past years. Thus, there is a need for validations of the functional properties of these formulations; nevertheless, in vivo assays are complex and require a lot of resources. One approach for estimating bioactive compounds' functionality and health benefits is to evaluate their bioaccessibility on a specific food matrix, determined by various factors. This article aims to review different factors influencing the bioaccessibility of ANC evaluated on in vitro digestion models as a functionality parameter, elucidating the effect of chemical composition, raw materials, food matrices, and vehicles for the delivery of ANC. Methods: Study searches were performed using PubMed, Web of Science, Scopus, and Science Direct databases. Results: Different factors influenced bioaccessibility and stability of ANC studied by in vitro digestion which are: i) the raw material used for ANC obtention; ii) food processing; iii) other food components; iv) the extraction method and solvents used; v) the structure of ANC; vi) delivery system (e.g., microencapsulation); vii) pH of the medium; viii) the digestion stage. Conclusion: Simulated digestion systems allow to determine free or encapsulated ANC bioaccessibility in different food matrices, which offers advantages in determining the potential functionality of a food product.


Antioxidants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 554
Author(s):  
Anna Jakubczyk ◽  
Urszula Złotek ◽  
Urszula Szymanowska ◽  
Kamila Rybczyńska-Tkaczyk ◽  
Krystyna Jęderka ◽  
...  

Lovage seedlings were elicited with jasmonic acid (JA) and yeast extract (YE) to induce the synthesis of biologically active compounds. A simulated digestion process was carried out to determine the potential bioavailability of phenolic acids. Buffer extracts were prepared for comparison. The ability to neutralize ABTS radicals was higher in all samples after the in vitro digestion, compared to that in the buffer extracts. However, the elicitation resulted in a significant increase only in the value of the reduction power of the potentially bioavailable fraction of phenolic acids. The effect of the elicitation on the activity of the potentially bioavailable fraction of phenolic acids towards the enzymes involved in the pathogenesis of the metabolic syndrome, i.e., ACE, lipase, amylase, and glucosidase, was analyzed as well. The in vitro digestion caused a significant increase in the ability to inhibit the activity of these enzymes; moreover, the inhibitory activity against alpha-amylase was revealed only after the digestion process. The potential anti-inflammatory effect of the analyzed extracts was defined as the ability to inhibit key pro-inflammatory enzymes, i.e., lipoxygenase and cyclooxygenase 2. The buffer extracts from the YE-elicited lovage inhibited the LOX and COX-2 activity more effectively than the extracts from the control plants. A significant increase in the anti-inflammatory and antimicrobial properties was noted after the simulated digestion.


2013 ◽  
Vol 45 (8) ◽  
pp. 669-676 ◽  
Author(s):  
Gianluca Carnevale ◽  
Massimo Riccio ◽  
Alessandra Pisciotta ◽  
Francesca Beretti ◽  
Tullia Maraldi ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Tullia Maraldi ◽  
Marianna Guida ◽  
Manuela Zavatti ◽  
Elisa Resca ◽  
Laura Bertoni ◽  
...  

Human amniotic fluid stem cells (AFSC) are an attractive source for cell therapy due to their multilineage differentiation potential and accessibility advantages. However the clinical application of human stem cells largely depends on their capacity to expandin vitro, since there is an extensive donor-to-donor heterogeneity. Reactive oxygen species (ROS) and cellular oxidative stress are involved in many physiological and pathophysiological processes of stem cells, including pluripotency, proliferation, differentiation, and stress resistance. The mode of action of ROS is also dependent on the localization of their target molecules. Thus, the modifications induced by ROS can be separated depending on the cellular compartments they affect. NAD(P)H oxidase family, particularly Nox4, has been known to produce ROS in the nucleus. In the present study we show that Nox4 nuclear expression (nNox4) depends on the donor and it correlates with the expression of transcription factors involved in stemness regulation, such as Oct4, SSEA-4, and Sox2. Moreover nNox4 is linked with the nuclear localization of redox sensitive transcription factors, as Nrf2 and NF-κB, and with the differentiation potential. Taken together, these results suggest that nNox4 regulation may have important effects in stem cell capability through modulation of transcription factors and DNA damage.


Sign in / Sign up

Export Citation Format

Share Document