scholarly journals Mallotus Feretianus Extract Inhibits Ethanol-induced Activation of Hepatic Stellate Cell via PI3K-Akt and cAMP-PKA Pathways (P06-065-19)

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Isao Matsui-Yuasa ◽  
Eri Yoshikawa ◽  
Xuedan Huang ◽  
Yoshinori Kobayashi ◽  
Akiko Kojima-Yuasa

Abstract Objectives Chronic and excessive alcohol consumption is a significant cause of liver fibrosis. The development of alcohol induced liver fibrosis may progress to hepatic decompensation and hepatocellular carcinoma. Therefore, liver fibrosis is associated with severe morbidity and mortality. Mallotus furetianus (MF) is a tropical plant in Hainan Island of China. The extract of its leaves is used as a folk medicine. In this study, we examined the effects of MF extract on the development of liver fibrosis in an in vivo ethanol-carbon tetrachloride (CCl4)-induced cirrhosis model and in vitro alcohol-injury model of hepatic stellate cells (HSCs). Methods Male Wistar rats were fed a diet that included 0.012% or 0.04% MF extract or no MF extract. For a period of 3 weeks, the animals were given drinking water containing 5% ethanol and were also treated with CCl4 (0.1 ml/kg of body weight). HSCs were isolated from male Wistar rats and were incubated with ethanol with or without MF extract. Results Plasma ALT and AST activities in rats treated with the ethanol plus CCl4 and MF extract (0.012% or 0.04%) were significantly reduced from the those in rats treated with the ethanol plus CCl4. The protective effect of MF extract was dose dependently. Histological analysis observed lipid and collagen accumulations in the liver of the ethanol plus CCl4-treated rats. On the other hand, MF extract treatment fully protected rats against ethanol plus CCl4-induced liver steatosis and fibrosis. HSCs play a main role in liver fibrosis because they are a primary producer of the extracellular matrix such as type I collagen and α-SMA. MF extract treatment suppressed the ethanol-induced increases in type I and α-SMA expression to near control levels in HSCs. The treatments with MF extract suppressed the increase in the levels of phosphorylated Akt in ethanol-treated HSCs. Furthermore, the treatment of LY194002, an inhibitor of PI3K, suppressed the ethanol-induced increase in the expression of type I collagen in HSCs. On the other hand, the addition of H-89, an inhibitor of PKA, inhibited the suppression of the synthesis of type I collagen in MF extract-treated HSCs. Conclusions MF extract may be a candidate for preventing ethanol-induced liver injury via regulating liver steatosis and fibrosis in PI3K-Akt and cAMP-PKA manners. Funding Sources This study was supported by JSPS KAKENHI Grant Numbers JP24500987, JP15K00832.

Author(s):  
RAMANDEEP KAUR ◽  
Makula Ajitha

Objective: In the present study, transdermal nanoemulsion (NE) gel of lovastatin was investigated for its anti-osteoporosis effect on the long bones of rat i.e. tibia. Methods: Male wistar rats (n=30, weighing 180-200g) were taken for this study and grouped as: 1) control (normal saline daily), 2) Dex (dexamethasone sodium; 25 mg/kg subcutaneously twice a week), 3) Dex+LNG5 (lovastatin nanoemulsion gel; 5 mg/kg/d transdermally daily), 4) Dex+LNG10 (lovastatin nanoemulsion gel; 10 mg/kg/d transdermally daily), and 5) Dex+ALN (alendronate sodium; 0.03 mg/kg/d orally daily). All the treatments were carried out for 60 d. At the end of the experiment, all animals were anesthetized using diethyl ether and collected blood samples from retro-orbital venous plexus of rats in dry eppendorf tubes followed by the sacrifice of animals by cervical dislocation method and collected tibia bones of both the legs for analysis. Results: Bone formation biomarkers (OC: osteocalcin, b-ALP: bone-specific alkaline phosphatase, PINP: N-terminal propeptides of type I procollagen) were significantly improved and resorption biomarkers (CTx: C-terminal cross-linking telopeptides of type-I collagen, TRAcP5b: isoform 5b of tartarate resistant acid phosphatase) were significantly reduced in the LNG5 (p<0.05) and LNG10 (p<0.05) treatment groups when compared to Dex. In vivo anti-osteoporotic results demonstrated the formation of new bone in osteoporotic rat tibias. Biomechanical strength testing demonstrated increased load-bearing capacity of rat tibias in the treated animals in comparison with the osteoporotic group (p<0.05 for LNG5 and p<0.01 for LNG10). Conclusion: Thus, the transdermal NE gel formulation of lovastatin demonstrated the greater potential for the treatment of osteoporosis.


1995 ◽  
Vol 89 (1) ◽  
pp. 69-73 ◽  
Author(s):  
Andrew E. Pocock ◽  
Martin J. O. Francis ◽  
Roger Smith

1. Skin fibroblast lines were cultured from nine patients who had the features of idiopathic juvenile osteoporosis, six relatives, five unrelated control subjects and three unrelated patients with osteogenesis imperfecta type I. Some patients with idiopathic juvenile osteoporosis were adults whose previous osteoporosis was in remission. Two patients with idiopathic juvenile osteoporosis were siblings and one patient with idiopathic juvenile osteoporosis had a daughter with severe osteogenesis imperfecta (type III). 2. The ratio of type III to type I collagen, synthesized by fibroblasts, was increased in two of the patients with osteogenesis imperfecta type I and in the daughter with osteogenesis imperfecta type III, but was normal in all the other patients with idiopathic juvenile osteoporosis and the other relatives. 3. Radiolabelled collagen was digested by cyanogen bromide and separated on SDS-PAGE. Unreduced collagen peptides migrated normally, except those from both the two siblings with idiopathic juvenile osteoporosis. In these two lines, abnormal migration suggested the presence of collagen I mutations. 4. The secretion of synthesized collagen by these two idiopathic juvenile osteoporosis lines and two others was reduced to only 43–45% as compared with a line from a 13-year-old control subject, which was defined as 100%. The three osteogenesis imperfecta type I lines secreted 18–37%, the other five idiopathic juvenile osteoporosis lines secreted 57–75%, the relatives (including the daughter with severe osteogenesis imperfecta) secreted 49–115% and the controls secreted 69–102%. 5. We conclude that qualitative abnormalities of type I collagen associated with a reduction in total secreted collagen synthesis may occur in a minority of patients with idiopathic juvenile osteoporosis; these patients could represent a subset of patients with this disorder.


2009 ◽  
Vol 390 (9) ◽  
Author(s):  
Sylvie Desmarais ◽  
Frédéric Massé ◽  
M. David Percival

Abstract Cathepsin K (Cat K) degrades bone type I collagen and is a target for the pharmacological treatment of osteoporosis. Further roles for Cat K have been recently described, some of which are supported by the use of purportedly selective Cat K inhibitors in human and rodent cell-based assays. Twelve commercial and non-commercial Cat K inhibitors were profiled against a panel of purified human, rat, and mouse cysteine cathepsins and in two cell-based enzyme occupancy assays for activity against Cat K, B, and L. Ten inhibitors, including the carbohydrazide Cat K inhibitor II (Boc-Phe-Leu-NHNH-CO-NHNH-Leu-Z), the non-covalent K4b, and the epoxide NC-2300, have either little Cat K selectivity, or appear poorly cell penetrant. The amino-acetonitrile-containing inhibitors L-873724 and odanacatib show greater than 100-fold human Cat K enzyme selectivity and have similar IC50 values against each cathepsin in cell-based and enzyme assays. The basic inhibitor balicatib has greater cellular potencies than expected on the basis of purified enzyme assays. The accumulation of [14C]-balicatib in fibroblasts is blocked by prior treatment of the cells with NH4Cl, consistent with balicatib having lysosomotropic properties. These results support the use of L-873724 and odanacatib as tools to identify novel roles for Cat K using human cell-based systems, but suggest using caution in the interpretation of studies employing the other compounds.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jianxia Wen ◽  
Dan Wang ◽  
Jian Wang ◽  
Ruilin Wang ◽  
Shizhang Wei ◽  
...  

Astragali Radix (AR), the dried root of Astragali Radix membranaceus (Fisch.) Bge. or Astragali Radix membranaceus (Fisch.) Bge. var. mongholicus (Bge) Hsiao, is a commonly used traditional Chinese medicine for the treatment of liver diseases. This study aimed to comprehensively evaluate the pharmacological action and explore the potential mechanism of AR on liver fibrosis. Rats were administered with carbon tetrachloride for eight weeks, followed by oral treatment with AR for six weeks. The efficacy was confirmed by measuring liver function and liver fibrosis levels. The underlying mechanisms were explored by detecting the expression of related proteins. AR significantly decreased the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), collagen IV (COL-IV), hyaluronic acid (HA), laminin (LN), and precollagen type III (PCIII). In addition, AR inhibited the deposition of collagen and the activation of hepatic stellate cells. Those data strongly demonstrated that AR alleviated liver fibrosis by CCl4. In order to illustrate the potential inflammatory, the mRNA levels of IL-6, TNF-α, and IL-1β were detected. Subsequently, immunohistochemistry analysis was performed to further verify the expression of type I collagen. Finally, the expression of key proteins in the inflammatory signaling pathway was detected. AR significantly reduced the expression of high-mobility group box 1 (HMGB1), TLR4, Myd88, RAGE, and NF-κ B p65 genes and proteins. In addition, western blotting showed AR decreased the protein expression of RAGE, p-MEK1/2, p-ERK1/2, and p-c-Jun. Taken together, our data reveal that AR significantly inhibits liver fibrosis by intervening in the HMGB1-mediated inflammatory signaling pathway and secretion signaling pathway. This study will provide valuable references for the in-depth research and development of Astragali Radix against liver fibrosis.


1999 ◽  
Vol 10 (12) ◽  
pp. 4059-4073 ◽  
Author(s):  
Maddalena de Virgilio ◽  
Claudia Kitzmüller ◽  
Eva Schwaiger ◽  
Michael Klein ◽  
Gert Kreibich ◽  
...  

We are studying endoplasmic reticulum–associated degradation (ERAD) with the use of a truncated variant of the type I ER transmembrane glycoprotein ribophorin I (RI). The mutant protein, RI332, containing only the N-terminal 332 amino acids of the luminal domain of RI, has been shown to interact with calnexin and to be a substrate for the ubiquitin-proteasome pathway. When RI332 was expressed in HeLa cells, it was degraded with biphasic kinetics; an initial, slow phase of ∼45 min was followed by a second phase of threefold accelerated degradation. On the other hand, the kinetics of degradation of a form of RI332 in which the single used N-glycosylation consensus site had been removed (RI332-Thr) was monophasic and rapid, implying a role of the N-linked glycan in the first proteolytic phase. RI332degradation was enhanced when the binding of glycoproteins to calnexin was prevented. Moreover, the truncated glycoprotein interacted with calnexin preferentially during the first proteolytic phase, which strongly suggests that binding of RI332 to the lectin-like protein may result in the slow, initial phase of degradation. Additionally, mannose trimming appears to be required for efficient proteolysis of RI332. After treatment of cells with the inhibitor of N-glycosylation, tunicamycin, destruction of the truncated RI variants was severely inhibited; likewise, in cells preincubated with the calcium ionophore A23187, both RI332 and RI332-Thr were stabilized, despite the presence or absence of the N-linked glycan. On the other hand, both drugs are known to trigger the unfolded protein response (UPR), resulting in the induction of BiP and other ER-resident proteins. Indeed, only in drug-treated cells could an interaction between BiP and RI332 and RI332-Thr be detected. Induction of BiP was also evident after overexpression of murine Ire1, an ER transmembrane kinase known to play a central role in the UPR pathway; at the same time, stabilization of RI332 was observed. Together, these results suggest that binding of the substrate proteins to UPR-induced chaperones affects their half lives.


2019 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Luca Levrini ◽  
Luigi Paracchini ◽  
Maria Giulia Nosotti

The aim of the current work is to demonstrate the capacity of a new periodontal gel to occupy the spaces inside the periodontal pockets through Computational Fluid Dynamic (CFD). The test gel consists of two resorbable medical grade polymers (PEO, Poly Ethylen Oxide and HPMC, Hydroxy Propyl Metyl Cellulose), Type I Collagen, SAP (Vitamin C), and PBS (Saline Solution), while the control gel is 14% doxyclin controlled release gel, which is used for treating periodontal pockets with probing ≥5 mm after scaling and root plaining. The study examined the fluid dynamic analysis (Computational Fluid Dynamic—CFD) of two different gels, used in dentistry to treat periodontitis, in relation to both the geometry of the periodontal pocket and the function of two different types of needles that are used to distribute the preparation. The periodontal pocket was determined by reading DICOM images taken from the patient’s CAT scan. The results show that the H42® gel comes out uniformly compared to the other gel. Moreover, it is possible to observe how the rheological properties of the gel allow the fluid to spread evenly within the periodontal pocket in relation to the geometry of the needle. In particular, H42® gel exits in a constant way both from the first and the second exit. In fact, it was observed that by changing the geometry of the needle or the type of periodontal gel, the distribution of the gel inside the pocket was no longer homogeneous. Thus, having the correct rheological properties and correct needle geometries both speeds up the gel and optimizes the pressure distribution. Currently, the literature is still lacking, therefore further studies will be needed to confirm these results.


2007 ◽  
Vol 22 (4) ◽  
pp. 309-316 ◽  
Author(s):  
Sandro Cilindro de Souza ◽  
Washington Luiz de Oliveira ◽  
Dario Fernando de Oliveira Santos Soares ◽  
Carlos Henrique Briglia ◽  
Paulo Roberto Athanázio ◽  
...  

PURPOSE: To compare the biocompatibility of ethyl-cyanoacrylate (ECA) and octylcyanoacrylate (OCA) wound closures to sutures in rat skin. METHODS: Twenty-four male Wistar rats were subjected to three incisions which were closed using ECA, OCA or sutures . Rats were divided into four groups which received biopsies on the 3rd, 7th, 14th or 21st post-operative days. Necrosis, inflammation, dermatitis, infection, dehiscence, cicatricial enlargement and costs were examined; the histopathology evaluated was epithelialization, deep openings, foreign substance reaction, residues of synthesis material, fibrosis, inflammation, dehiscence and necrosis. RESULTS: The tissue adhesives presented the largest dehiscence levels, and ECA the lowest cost while the other measures were similar. Regarding histopathology, deep openings were more common with OCA and granulomas were most frequently obtained with ECA. The two tissue adhesives produces less inflammation than the inicial suture from post-operative day 7, while ECA and OCA cause similar inflammatory reactions. ECA did not differ significantly from OCA and sutures on other measures. CONCLUSION: ECA was well tolerated in this study and did not induce necrosis, allergic reactions or infections, presenting several advantages in relation to OCA and sutures, including lower costs and fewer complications.


1994 ◽  
Vol 3 (6) ◽  
pp. 481-492 ◽  
Author(s):  
Keiichi Kanda ◽  
Takehisa Matsuda

The effect of tensile stress on the orientation and phenotype of arterial smooth muscle cells (SMCs) cultured in three-dimensional (3D) type I collagen gels was morphologically investigated. Ring-shaped hybrid tissues were prepared by thermal gelation of a cold mixed solution of type I collagen and SMCs derived from bovine aorta. The tissues were subjected to three different modes of tensile stress. They were floated (isotonic control), stretched isometrically (static stress) and periodically stretched and recoiled by 5% above and below the resting tissue length at 60 RPM frequency (dynamic stress). After incubation for up to four wk, the tissues were investigated under a light microscope (LM) and a transmission electron microscope (TEM). Hematoxylin and eosinstained LM samples revealed that, irrespective of static or dynamic stress loading, SMCs in stress-loaded tissues exhibited elongated bipolar spindle shape and were regularly oriented parallel to the direction of the strain, whereas those in isotonic control tissues were polygonal or spherical and had no preferential orientation. In Azan-stained samples, collagen fiber bundles in isotonic control tissues were somewhat retracted around the polygonal SMCs to form a random network. On the other hand, those in statically and dynamically stressed tissues were accumulated and prominently oriented parallel to the stretch direction. Ultrastructural investigation using a TEM showed that SMCs in control and statically stressed tissues were almost totally filled with synthetic organelles such as rough endoplasmic reticulums, free ribosomes, Golgi complexes and mitochondria, indicating that the cells remained in the synthetic phenotype. On the other hand, SMCs in dynamically stressed tissues had increased fractions of contractile apparatus, such as myofilaments, dense bodies and extracellular filamentous materials equivalent to basement membranes, that progressed with incubation time. These results indicate that periodic stretch, in concert with 3-D extracellular collagen matrices, play a significant role in the phenotypic modulation of SMCs from the synthetic to the contractile state, as well as cellular and biomolecular orientation.


1984 ◽  
Vol 217 (1) ◽  
pp. 103-115 ◽  
Author(s):  
J F Bateman ◽  
T Mascara ◽  
D Chan ◽  
W G Cole

Cultured skin fibroblasts from seven consecutive cases of lethal perinatal osteogenesis imperfecta (OI) expressed defects of type I collagen metabolism. The secretion of [14C]proline-labelled collagen by the OI cells was specifically reduced (51-79% of control), and collagen degradation was increased to twice that of control cells in five cases and increased by approx. 30% in the other two cases. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis revealed that four of the OI cell lines produced two forms of type I collagen consisting of both normally and slowly migrating forms of the alpha 1(I)- and alpha 2(I)-chains. In the other three OI cell lines only the ‘slow’ alpha (I)′- and alpha 2(I)′-chains were detected. In both groups inhibition of the post-translational modifications of proline and lysine resulted in the production of a single species of type I collagen with normal electrophoretic migration. Proline hydroxylation was normal, but the hydroxylysine contents of alpha 1(I)′- and alpha 2(I)′-chains purified by h.p.l.c. were greater than in control alpha-chains. The glucosylgalactosylhydroxylysine content was increased approx. 3-fold while the galactosylhydroxylysine content was only slightly increased in the alpha 1(I)′-chains relative to control alpha 1(I)-chains. Peptide mapping of the CNBr-cleavage peptides provided evidence that the increased post-translational modifications were distributed throughout the alpha 1(I)′- and alpha 2(I)′-chains. It is postulated that the greater modification of these chains was due to structural defects of the alpha-chains leading to delayed helix formation. The abnormal charge heterogeneity observed in the alpha 1 CB8 peptide of one patient may reflect such a structural defect in the type I collagen molecule.


1935 ◽  
Vol 61 (5) ◽  
pp. 617-642 ◽  
Author(s):  
F. Duran-Reynals

Progressively decreasing quantities of bacteria of some 20 strains were utilized in experiments upon the effect of dispersing the organisms in the rabbit skin through the agency of an extract of testicle or an invasive staphylococcus. The same was done with 6 strains of filterable viruses. The bacterial lesions were enhanced by spreading when the organisms introduced were above a certain number or quantity (minimal effective concentration) and on the other hand were partially or totally suppressed when their number was less than this. Virulence and minimal effective concentration were observed to be in inverse relationship. The lesions due to the filterable viruses studied were, on the other hand, enhanced by the spreading factor even when the quantity of virus approached the minimal infective dose. This happened irrespective of whether the virus caused severe lesions or slight ones. The highly virulent Pneumococcus Type I, injected into normal rabbits together with the spreading factor, yielded enhanced lesions even at practically its minimal infective dose; but when the resistance of the animal was raised with specific antiserum the lesions were totally suppressed by the experimental dispersion of the bacteria. When such an experiment was repeated on a filterable virus, vaccinia, no suppression took place as a result of the dispersion of the infective agent. The significance of the differences in the bacterial and virus phenomena is discussed.


Sign in / Sign up

Export Citation Format

Share Document