Energy Savings Potential by Substituting Driving With Walking and Cycling for Short Distance

Author(s):  
T. M. I. Mahlia ◽  
M. Husnawan ◽  
H. H. Masjuki ◽  
L. Remuslara ◽  
R. Saidur

Vehicles energy consumption produces several emissions such as carbon dioxide (CO2), nitrogen oxide (NOx) and noise. This paper attempts to evaluate potential reduction in oil consumption and CO2 emissions if the obese and overweight conditions were eliminated from the adult population through the use of walking or cycling for transportation, and if individuals between the ages of 10 and 64 adopted recommended levels of daily exercise by walking or cycling instead of driving. Substantial co-benefits accompany widespread adoption of physical activity. The results found that the reductions in emissions from substituting driving with walking and cycling are significant enough to show a possible improvement of air quality. The highest reduction of CO2 emissions comes from the substitution of driving with exercising by cycling for 7 hours a week, which amounts to 2.38 Tg (Teragram) of reduction.

Clean Energy ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 124-140
Author(s):  
Fabio Orecchini ◽  
Adriano Santiangeli ◽  
Fabrizio Zuccari

Abstract To pursue the goal of sustainable mobility, two main paths can be considered: the electrification of vehicles and the use of biofuels, replacing fossil fuels, in internal combustion engine (ICE) vehicles. This paper proposes an analysis of different possible scenarios for automobiles towards a CO2-neutral energy system, in the path of the use of biofuels and the production, distribution and use of biomethane. The study, an update of work presented previously, focuses on different scenarios that take into account numerous parameters that affect the overall efficiency of the production-and-use process. A Well-to-Wheel analysis is used to estimate the primary energy savings and reduction in greenhouse-gas emissions compared both to the use of fossil-based methane and to other fuels and automotive technologies. In particular, the study shows that the Non-Renewable Primary Energy Consumption (NRPEC) for biomethane is slightly higher (+9%) than that of biodiesel, but significantly lower than those of all the other power trains analysed: –69% compared to the battery electric vehicle (BEV) and –55% compared to bioethanol. Compared to the use of fossil natural gas, the NRPEC is reduced to just over a third (2.81). With regard to CO2 emissions, biomethane has the lowest values: –69% compared to BEV, –176% compared to bioethanol and –124% with respect to biodiesel. Compared to the use of fossil natural gas, the CO2 emissions are reduced over a third (3.55). Moreover, the paper shows that biomethane can completely cover the consumption of fossil methane for vehicles in Italy, proposing two different hypotheses: maximum production and minimum production. It is evident, therefore, that biomethane production can completely cover the consumption of fossil methane for vehicles: this means that the use of biomethane in the car can lead to a reduction in NRPEC equal to 28.9 × 106 GJ/year and a reduction of CO2 emissions equal to 1.9 × 106 t/year.


2018 ◽  
Vol 7 (3.2) ◽  
pp. 453
Author(s):  
Tkachenko Tetiana ◽  
. .

The proposed methodology for estimating the reduction of CO2 emissions by green constructions (green roof and facade greening) due to the “cooling effect” during the cooling period allows to calculate CO2 savings in warm periods of the year. For Kyiv, in July, the reduction of CO2 emissions per m2 at coal using is 133 g / m2, during the warm period of the year – 515 g / m2; using gas – 78 g / m2 and 303 g / m2. It is established that the energy savings of a green roof depends on the thickness of the thermal insulation of buildings: the thicker insulation causes the less green roof contribution to energy savings. However, the significance of their effectiveness remains. Green roofs can be especially effective in switching from gas to local solid fuels: peat waste, pellets, etc. As a practical recommendation, it is proposed to coordinate the placement of greened and ungreen parts of the green roof with rooms under the roof, which allows to reduce the refrigeration load on air conditioning. In addition, recommendations on grass care on the green roof have been developed. To maximize the cooling effect, it is necessary to maintain grass height no more than120 mm. Before the beginning of the transition period, it is necessary to stop mowing the grass, which reduces the cooling effect.  


Author(s):  
Paulo Henrique da Silva Costa ◽  
Leisy Mikaelly Alves Teixeira ◽  
Janaína Cardoso Pinheiro ◽  
Fabiana Serra Arruda ◽  
Augusto César de Mendonça Brasil

This work aims to measure the reduction of Carbon Dioxide (CO2) emissions in atmosphere by replacing the modal urban bus by Light Rail Vehicle (VLT). In order to accomplish this objective, a case study in Brasilia, Federal District, in the stretch of VLT which passes on Via W-3 South was conducted. The Theory of Externalities that discusses the right to ownership of private and public goods and responsibilities about the positive and negative externalities caused by the agents and individuals of society was used to support the analyses. It was used the Top-Down method, which allowed the calculation the direct emissions of CO2. The values obtained on the reduction of CO2 emissions were converted into values of carbon credits as a way to economically measure such reductions.  The results showed a significant reduction in CO2 emissions per year and consequent environmental benefit.DOI: http://dx.doi.org/10.4995/CIT2016.2016.3480 


2019 ◽  
Vol 20 (1) ◽  
pp. 37
Author(s):  
Zainuri Zainuri ◽  
Dedi Zargustin ◽  
Gusneli Yanti ◽  
Shanti Wahyuni Megasari

ABSTRACTPalm oil midrib waste has not been utilized so far, so it has potentially contributed CO2 emissions into the atmosphere. The area of oil palm plantations in Riau province in 2015 was 2,400,900 hectares and in 2016 increased by 2,430,500 hectares. The oil palm midrib waste produced by 148 trees per hectare is 3.108 tons/month or 37.296 tons/year. It means that with 2,430,500 hectares of palm plantations, the resulting waste is 90,647,928 tons/year. The waste can affect the environment. If the palm oil midribs that have been cut and then stacked or burned will contribute large CO2 emissions to the environment. One of the efforts to utilize palm oil midrib waste is to use the fiber as an added material in the brick making. The purpose of this study is to calculate the reduction of CO2 emissions by utilizing palm oil midrib waste on fiber-brick production. The method used in this research is a descriptive method. The research carried out is quantitative with an experimental approach and laboratory research. The findings of this study are that the utilization of palm oil midrib fibers which are used as additives to the manufacture of fiber-brick concrete can reduce carbon dioxide (CO2) emissions by 231,420.06 tons/year. The conclusion of this study is that CO2 emissions produced from fiber-brick production machines in 1 m3 are 0.00179 ton and CO2 emissions that can be reduced by utilizing palm oil midrib fiber as an additive to fiber-brick production by 231,420.06 tons/year. Keywords: CO2, emissions, oil palm, midribABSTRAKLimbah pelepah kelapa sawit selama ini masih belum dimanfaatkan, sehingga berpotensi menyumbangkan emisi CO2 ke udara. Luas perkebunan kelapa sawit yang ada di provinsi Riau tahun 2015 adalah 2.400.900 hektar dan pada tahun 2016 meningkat sebesar 2.430.500 hektar. Limbah pelepah kelapa sawit yang dihasilkan oleh 148 pohon per hektar adalah 3,108 ton/bulan atau 37,296 ton/tahun. Artinya, dengan luas perkebunan sawit 2.430.500 hektar, maka limbah yang dihasilkan sebesar 90.647.928 ton/tahun. Limbah tersebut dapat berpengaruh terhadap lingkungan. Apabila pelepah kelapa sawit yang telah dipotong lalu ditumpuk atau dibakar akan menyumbangkan emisi CO2 yang besar terhadap lingkungan. Salah satu upaya memanfaatkan limbah pelepah kelapa sawit adalah memakai seratnya sebagai bahan tambah dalam pembuatan batako. Tujuan penelitian ini untuk menghitung pengurangan emisi CO2 dengan dimanfaatkannya limbah pelepah kelapa sawit pada produksi batako-serat. Metode yang digunakan adalah metode deskriptif. Penelitian yang dilaksanakan bersifat kuantitatif dengan pendekatan eksperimental dan riset laboratorium. Temuan penelitian ini adalah bahwa pemanfaatan serat pelepah kelapa sawit yang dijadikan sebagai bahan tambah pada pembuatan batako-serat dapat mengurangi emisi karbon dioksida (CO2) sebesar 231.420,06 ton/tahun. Kesimpulan penelitian ini adalah bahwa emisi CO2 yang dihasilkan dari mesin produksi batako-serat dalam 1 m3 adalah 0,00179 ton/m3 dan emisi CO2 yang dapat dikurangi dengan memanfaatkan serat pelepah kelapa sawit sebagai bahan tambah pada produksi batako-serat sebesar 231.420,06 ton/tahun.Kata kunci: CO2, emisi, kelapa sawit, pelepah


2013 ◽  
Vol 12 (5) ◽  
pp. 551
Author(s):  
Rudie Nel ◽  
Johann Du Plooy

The objective of the study was to consider the role of tax incentives (deductions and allowances in terms of the South African Income Tax Act) in reducing carbon dioxide (CO2)emissions in the automotive industry. The objective was achieved in the light of qualitative empirical evidence obtained from South African vehicle manufacturers. A questionnaire was circulated to nine South African vehicle manufacturers and the responses were interpreted to establish whether current tax incentives provide an incentive to reduce CO2 emissions. Findings highlighted the importance of tax incentives in reducing CO2 emissions and suggest that vehicle manufacturers regard tax incentive-driven policies as the most effective tool in reducing CO2 emissions. However, since it is difficult to qualify for current tax incentives, this approach might not provide the necessary incentive to reduce CO2 emissions. It is recommended that tax incentive policies either be simplified or alternative initiatives be introduced to encourage investments in the reduction of CO2 emissions.


Sign in / Sign up

Export Citation Format

Share Document