scholarly journals Functional Organization of Frontoparietal Cortex in the Marmoset Investigated with Awake Resting-State fMRI

2021 ◽  
Author(s):  
Yuki Hori ◽  
Justine C Cléry ◽  
David J Schaeffer ◽  
Ravi S Menon ◽  
Stefan Everling

Abstract Frontoparietal networks contribute to complex cognitive functions in humans and macaques, such as working memory, attention, task-switching, response suppression, grasping, reaching, and eye movement control. However, there has been no comprehensive examination of the functional organization of frontoparietal networks using functional magnetic resonance imaging in the New World common marmoset monkey (Callithrix jacchus), which is now widely recognized as a powerful nonhuman primate experimental animal. In this study, we employed hierarchical clustering of interareal blood oxygen level–dependent signals to investigate the hypothesis that the organization of the frontoparietal cortex in the marmoset follows the organizational principles of the macaque frontoparietal system. We found that the posterior part of the lateral frontal cortex (premotor regions) was functionally connected to the anterior parietal areas, while more anterior frontal regions (frontal eye field [FEF]) were connected to more posterior parietal areas (the region around the lateral intraparietal area [LIP]). These overarching patterns of interareal organization are consistent with a recent macaque study. These findings demonstrate parallel frontoparietal processing streams in marmosets and support the functional similarities of FEF–LIP and premotor–anterior parietal pathways between marmoset and macaque.

2021 ◽  
Author(s):  
Yuki Hori ◽  
Justine C. Clery ◽  
David J. Schaeffer ◽  
Ravi S. Menon ◽  
Stefan Everling

Frontoparietal networks contribute to complex cognitive functions in humans and macaques such as working memory, attention, task-switching, response suppression, grasping, reaching, and eye movement control. However, little is known about the organization of frontoparietal networks in the New World common marmoset monkey (Callithrix jacchus) which is now widely recognized as a powerful nonhuman primate experimental animal. In this study, we employed hierarchical clustering of interareal BOLD signals to investigate the hypothesis that the organization of the frontoparietal cortex in the marmoset follows the organizational principles of the macaque frontoparietal system. We found that the posterior part of the lateral frontal cortex (premotor regions) was functionally connected to the anterior parietal areas while more anterior frontal regions (frontal eye field (FEF)) were connected to more posterior parietal areas (the area around lateral intraparietal area (LIP)). These overarching patterns of inter-areal organization are consistent with a recent macaque study. These findings demonstrate parallel frontoparietal processing streams in marmosets and support the functional homologies of FEF-LIP and premotor-anterior parietal pathways between marmoset and macaque.


2013 ◽  
Vol 74 (2) ◽  
pp. 196-205 ◽  
Author(s):  
Silja Torvik Griffiths ◽  
Hilde Gundersen ◽  
Emanuel Neto ◽  
Irene Elgen ◽  
Trond Markestad ◽  
...  

2018 ◽  
pp. 6-13 ◽  
Author(s):  
A. S. Smirnov ◽  
M. G. Sharaev ◽  
T. V. Melnikova-Pitskhelauri ◽  
V. Yu. Zhukov ◽  
A. E. Bikanov ◽  
...  

Today, functional magnetic resonance imaging (fMRI) allows to plan surgery based on the topography of functionally important areas of the human brain cortex and tumor. This method can complement the surgical strategy with significant clinical information. The stimulus-dependent fMRI with motor and language paradigms is generally used for preoperative planning. The study outcome depends on the patient's ability to perform tasks paradigm, which is broken in brain tumors. In an attempt to overcome this problem, resting-state fMRI (rs-fMRI) is used for brain mapping. Rs-fMRI is based on the measurement of spontaneous fluctuations of the BOLD signal (blood oxygen level-dependent), representing the functional structure of the brain. In contrast to stimulus-dependent fMRI, rs-fMRI provides more complete information about functional architecture of the brain. rs-fMRI is used in conditions where the results of stimulusdependent fMRI may be falsely positive or in the absence of the possibility of its implementation. In aggregate, both methods significantly expand the efficiency and specificity of preoperative planning.


2019 ◽  
Author(s):  
Robyn L. Miller ◽  
Godfrey Pearlson ◽  
Vince D. Calhoun

AbstractFrom a large clinical blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) study, we report several interrelated findings involving transient supra-network brainwide states characterized by a saturation phenomenon we are referring to as “polarization.” These are whole-brain states in which the voxelwise-normalized BOLD (vnBOLD) activation of a large proportion of voxels is simultaneously either very high or very low. The presence of such states during a resting-state fMRI (rs-fMRI) scan is significantly anti-correlated with diagnosed schizophrenia, significantly anti-correlated with connectivity between subcortical networks and auditory, visual and sensorimotor networks and also significantly anti-correlated with contemporaneous occupancy of transient functional network connectivity states featuring broad disconnectivity or strong inhibitory connections between the default mode and other networks. Conversely, the presence of highly polarized vn-BOLD states is significantly correlated with connectivity strength between auditory, visual and sensorimotor networks and with contemporaneous occupancy of transient whole-brain patterns of strongly modularized network connectivity and diffuse hyperconnectivity. Despite their consistency with well-documented effects of schizophrenia on static and time-varying functional network connectivity, the observed relationships between polarization and network connectivity are with very few exceptions unmediated by schizophrenia diagnosis. We also find that the spatial distribution of voxels most likely to contribute to the highly polarized states (polarity participation maps (PPMs)) differs with a high degree of statistical significance between schizophrenia patients and healthy controls. Finally, we report evidence suggesting the process by which the most polarized states are achieved, i.e. the ways that strongly polarized voxel regions extend, merge and recede also differs significantly between patient and control populations. Many differences observed between patients and controls are echoed within the patient population itself in the effect patterns of positive symptomology (e.g. hallucinations, delusions, grandiosity and other positive symptoms of schizophrenia). Our findings highlight a particular whole-brain spatiotemporal BOLD activation phenomenon that differs markedly between healthy subjects and schizophrenia patients, one that also strongly informs time-resolved network connectivity patterns that are associated with this serious clinical disorder.


2013 ◽  
Vol 109 (10) ◽  
pp. 2560-2570 ◽  
Author(s):  
Sahand Babapoor-Farrokhran ◽  
R. Matthew Hutchison ◽  
Joseph S. Gati ◽  
Ravi S. Menon ◽  
Stefan Everling

It has been previously shown that small- and large-amplitude saccades have different functions during vision in natural environments. Large saccades are associated with reaching movements toward objects, whereas small saccades facilitate the identification of more detailed object features necessary for successful grasping and manual manipulation. To determine whether these represent dichotomous processing streams, we used resting-state functional MRI to examine the functional connectivity patterns of the medial and lateral frontal eye field (FEF) regions that encode large- and small-amplitude saccades, respectively. We found that the spontaneous blood oxygen level-dependent signals of the medial FEF were functionally correlated with areas known to be involved in reaching movements and executive control processes, whereas lateral FEF was functionally correlated with cortical areas involved in object processing and in grasping, fixation, and manipulation of objects. The results provide strong evidence for two distinct visuomotor network systems in the primate brain that likely reflect the alternating phases of vision for action in natural environments.


2002 ◽  
Vol 14 (3) ◽  
pp. 508-523 ◽  
Author(s):  
Maurizio Corbetta ◽  
J. Michelle Kincade ◽  
Gordon L. Shulman

We investigated neural correlates of human visual orienting using event-related functional magnetic resonance imaging (fMRI). When subjects voluntarily directed attention to a peripheral location, we recorded robust and sustained signals uniquely from the intraparietal sulcus (IPs) and superior frontal cortex (near the frontal eye field, FEF). In the ventral IPs and FEF only, the blood oxygen level dependent signal was modulated by the direction of attention. The IPs and FEF also maintained the most sustained level of activation during a 7-sec delay, when subjects maintained attention at the peripheral cued location (working memory). Therefore, the IPs and FEF form a dorsal network that controls the endogenous allocation and maintenance of visuospatial attention. A separate right hemisphere network was activated by the detection of targets at unattended locations. Activation was largely independent of the target's location (visual field). This network included among other regions the right temporo-parietal junction and the inferior frontal gyrus. We propose that this cortical network is important for reorienting to sensory events.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246368
Author(s):  
Amrita Pal ◽  
Jennifer A. Ogren ◽  
Ravi S. Aysola ◽  
Rajesh Kumar ◽  
Luke A. Henderson ◽  
...  

Study objectives Brain regulation of autonomic function in obstructive sleep apnea (OSA) is disrupted in a sex-specific manner, including in the insula, which may contribute to several comorbidities. The insular gyri have anatomically distinct functions with respect to autonomic nervous system regulation; yet, OSA exerts little effect on the organization of insular gyral responses to sympathetic components of an autonomic challenge, the Valsalva. We further assessed neural responses of insular gyri in people with OSA to a static handgrip task, which principally involves parasympathetic withdrawal. Methods We measured insular function with blood oxygen level dependent functional MRI. We studied 48 newly-diagnosed OSA (age mean±std:46.5±9 years; AHI±std:32.6±21.1 events/hour; 36 male) and 63 healthy (47.2±8.8 years;40 male) participants. Subjects performed four 16s handgrips (1 min intervals, 80% subjective maximum strength) during scanning. fMRI time trends from five insular gyri—anterior short (ASG); mid short (MSG); posterior short (PSG); anterior long (ALG); and posterior long (PLG)—were assessed for within-group responses and between-group differences with repeated measures ANOVA (p<0.05) in combined and separate female-male models; age and resting heart-rate (HR) influences were also assessed. Results Females showed greater right anterior dominance at the ASG, but no differences emerged between OSA and controls in relation to functional organization of the insula in response to handgrip. Males showed greater left anterior dominance at the ASG, but there were also no differences between OSA and controls. The males showed a group difference between OSA and controls only in the ALG. OSA males had lower left activation at the ALG compared to control males. Responses were mostly influenced by HR and age; however, age did not impact the response for right anterior dominance in females. Conclusions Insular gyri functional responses to handgrip differ in OSA vs controls in a sex-based manner, but only in laterality of one gyrus, suggesting anterior and right-side insular dominance during sympathetic activation but parasympathetic withdrawal is largely intact, despite morphologic injury to the overall structure.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rosaleena Mohanty ◽  
William A. Sethares ◽  
Veena A. Nair ◽  
Vivek Prabhakaran

AbstractFunctional magnetic resonance imaging (fMRI)-based functional connectivity (FC) commonly characterizes the functional connections in the brain. Conventional quantification of FC by Pearson's correlation captures linear, time-domain dependencies among blood-oxygen-level-dependent (BOLD) signals. We examined measures to quantify FC by investigating: (i) Is Pearson's correlation sufficient to characterize FC? (ii) Can alternative measures better quantify FC? (iii) What are the implications of using alternative FC measures? FMRI analysis in healthy adult population suggested that: (i) Pearson's correlation cannot comprehensively capture BOLD inter-dependencies. (ii) Eight alternative FC measures were similarly consistent between task and resting-state fMRI, improved age-based classification and provided better association with behavioral outcomes. (iii) Formulated hypotheses were: first, in lieu of Pearson’s correlation, an augmented, composite and multi-metric definition of FC is more appropriate; second, canonical large-scale brain networks may depend on the chosen FC measure. A thorough notion of FC promises better understanding of variations within a given population.


2018 ◽  
Author(s):  
Charles F. Caskey ◽  
Jeffrey Schall ◽  
William Grissom ◽  
Wolf Zinke ◽  
Josh Cosman ◽  
...  

All presently available neural stimulation methods are either invasive or can only be moderately localized, and a neurostimulation method that could overcome these limitations would be invaluable for the mapping of brain circuits, disease diagnosis in the brain, neurosurgery and therapy. Neural stimulation with magnetic resonance guided focused ultrasound (MRgFUS) is a promising technology that can noninvasively excite or inhibit neural activity in well-defined discrete volumes of the brain, subsequently enabling investigation of brain circuits with magnetic resonance imaging (MRI). In this study, we seek to explore ultrasonic neuromodulation in the frontal eye field of a macaque monkey, while measuring the effects of neuromodulation via eventrelated potentials, behavioral responses, and blood oxygen level dependent functional MRI.


Sign in / Sign up

Export Citation Format

Share Document